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Abstract

Determining the maximum size of a t-intersecting code in [m]n was a longstanding open problem of
Frankl and Füredi, solved independently by Ahlswede and Khachatrian and by Frankl and Tokushige.
We extend their result to the setting of forbidden intersections, by showing that for anym > 2 and n large
compared with t (but not necessarily m) that the same bound holds for codes with the weaker property
of being (t− 1)-avoiding, i.e. having no two vectors that agree on exactly t− 1 coordinates. Our proof
proceeds via a junta approximation result of independent interest, which we prove via a development of
our recent theory of global hypercontractivity: we show that any (t− 1)-avoiding code is approximately
contained in a t-intersecting junta (a code where membership is determined by a constant number of
coordinates). In particular, when t = 1 this gives an alternative proof of a recent result of Eberhard,
Kahn, Narayanan and Spirkl that symmetric intersecting codes in [m]n have size o(mn).

1 Introduction

Many intersection problems for finite sets (see the survey [13]) have natural generalisations to a setting
variously described as codes, vectors or integer sequences. For example, any intersecting family of subsets
of [n] has size at most 2n−1, and more generally any intersecting code in [m]n has size at most mn−1,
where we say a code F ⊂ [m]n is intersecting if for any x, y in F there is some i with xi = yi. However,
these settings are quite different, in that there are many maximum intersecting families of sets, including
very symmetric examples such as the family of all sets of size > n/2, whereas in [m]n for m > 2 the
only example is obtained by fixing one coordinate to have a fixed value. A more substantial difference was
recently demonstrated by Eberhard, Kahn, Narayanan and Spirkl [5], who showed that adding a symmetry
assumption reduces the maximum size to o(mn).

A longstanding open problem of Frankl and Füredi [9] posed the corresponding question for codes
F ⊂ [m]n that are t-intersecting, in that any x, y in F have agreement agr(x, y) = |{i : xi = yi}| ≥ t.
From the perspective of coding theory, one may think of such F as an ‘anti-code’, in that we are imposing
an upper bound on the Hamming distance between any two of its vectors. From a combinatorial perspective,
the natural analogy is with t-intersecting k-graphs (k-uniform hypergraphs), for which the extremal question
was also a longstanding open problem, posed by Erdős, Ko and Rado [8] and finally resolved by the Com-
plete Intersection Theorem of Ahlswede and Khachatrian [1]. The analogous result for codes, resolving the
problem of Frankl and Füredi, was also obtained by Ahlswede and Khachatrian [2], and independently by
Frankl and Tokushige [12]. They showed that the maximum size of a t-intersecting code in [m]n is achieved
by one of the following natural examples, which can be thought of as Hamming balls on a subset of the
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coordinates, and which we will simply call ‘balls’ (following [26]): let

St,r[m]n = {x ∈ [m]n : |{j ∈ [1, t+ 2r] : xj = 1}| > t+ r}.

We show for any m > 2 and n large compared with t (but not necessarily m) that the same conclusion
holds under the weaker assumption that F is (t− 1)-avoiding, i.e. no x, y in F have agreement t− 1.

Theorem 1.1. For all t ∈ N there is n0 ∈ N such that if F ⊂ [m]n is a (t− 1)-avoiding code with m > 3
and n > n0 then |F| 6 maxr≥0 |St,r[m]n| with equality only when F is isomorphic to a ball.

Theorem 1.1 can be viewed as an analogue for codes of the classical forbidden intersection problem
for set systems, which has a substantial literature, particularly stemming from the many applications of
the celebrated Frankl-Rödl theorem [11] (see also [10, 16]). Our proof (discussed in the next subsection)
proceeds via a junta approximation result of independent interest, showing that any (t − 1)-avoiding code
is approximately contained in a t-intersecting junta (a code where membership is determined by a constant
number of coordinates). In particular, when t = 1 this gives an alternative proof of the result of [5], as a
family that essentially depends on few coordinates is very far from being symmetric.

1.1 Overview of the proof

The proof of Theorem 1.1 has three steps, each of which has elements of independent interest.

(1) Junta approximation: any (t− 1)-avoiding code is approximately contained in a t-intersecting junta.

(2) Anticode Stability: a stability version of the Ahlswede-Khachatrian theorem on anticodes determines
the structure of the junta from (1) – it must be a certain ball F .

(3) Bootstrapping: given that the code of maximum size is close to F , it must in fact be equal to F .

The methods required to implement these three steps depend considerably on the size ofm, and we need
a variety of ideas in Combinatorics and Analysis, some of which are new. The most significant new idea in
this paper is a random gluing operation, which may be thought of as a natural, more versatile, analog of the
sharp threshold phenomenon from the biased hypercube, as we explain next.

Random gluings. Often times, when working over the p-biased Boolean hypercube, i.e. {0, 1}n along
with the measure µp(x) = p|{ i∈[n] |xi=1}|(1− p)|{ i∈[n] |xi=0}|, one is interested in studying the structure of
a monotone family F ⊆ {0, 1}n (i.e. a family such that if x ∈ F and xi 6 yi for all i, then y ∈ F). One
particularly useful idea is to see how much the measure of the family changes when increasing p, i.e. study
the behaviour of µp(F) = Prx∼µp [x ∈ F ] as a function of p. It is easy to see that this is an increasing
function of p, and the main point of this idea is that the rate of increase tells us a lot about the structure F
has. In a nutshell, unless the family F has some local, junta-like, structure, 1this increase must be sharp.
This idea plays significant role is various problems in analysis and extremal combinatorics, but seems to
be specific to the cube: one heavily relies on an ordering of {0, 1}n which makes sense with respect to
intersection problems, and such orderings do not exist on many other domains, such as [m]n.

Our random gluing operator may be viewed as a natural extension of the above operator to [m]n, which
is also potentially more versatile and may be relevant in other domains. Given a k < m and a family

1When p is bounded away from 0 and 1 this structure is simply a junta, but when p = o(1) or p = 1 − o(1), this structure
may be more complicated and is not fully understood. The notion of “local structure” in this case considered herein, corresponds
to having restrictions of the family F with significant measure.
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F ⊆ [m]n, we think of shrinking the alphabet (in each coordinate independently) fromm to k, by identifying
each symbol σ ∈ [m] with a symbol from [k]. I.e., given such identifications πi : [m] → [k] for each
i, one may consider the family Fπ = {(π1(x1), . . . , πn(xn)) |x ∈ F}. It is clear that such operation is
“friendly” with respect to intersection problems (e.g., if F is t-intersecting, then so is Fπ). We show that
this operation, when sampling π1, . . . , πn appropriately and considering an appropriate product measure on
[k]n, also enjoys the second effect of the “increasing p” idea from above. Namely, we show that unless F
has local structure (i.e, if F is global as per Definition 5.2), one can find a gluing operation that increases
the measure of F significantly.

The analysis of this gluing operation proceeds via noise stability and a new hypercontractive inequality
in general product spaces, which further extends our recent theory of global hypercontractivity introduced
in [15]. This part of the argument can also be viewed as a development of the Junta Method (see [4, 18, 15].)

The following is a precise statement of our junta approximation theorem, which is a stability theorem
of independent interest, describing the approximate structure of any (t − 1)-avoiding code with size that is
within a constant factor of the maximum possible.

Theorem 1.2. For every t ∈ N and η > 0 there are n0 and J in N such that ifF ⊂ [m]n is a (t−1)-avoiding
code with m > 3 and n > n0 then there is a t-intersecting J-junta J ⊂ [m]n such that |F \ J | 6 η|J |.

As mentioned above, Theorem 1.2 implies the result of [5], as a junta is far from being symmetric. The
assumption m ≥ 3 is necessary, as when m = 2 we have symmetric examples as mentioned above. When
m > m0(t) is large we will in fact obtain a more precise statement: J will be a subcube of co-dimension t
and we will give effective estimates for the approximation parameter η (see Theorems 6.3 and 7.14).

Our first ingredient in the proof of Theorem 1.2 is a regularity lemma, showing that any code can be
approximately decomposed into a constant number of pieces, each of which is pseudorandom, in a certain
sense that depends on the size ofm. Whenm < m0(t) is fixed and n > n0(t,m) is large, each piece is such
that constant size restrictions cannot significantly affect the measure. This is a strong pseudorandomness
condition, from which the proof can be completed fairly easily using a result of Mossel on Markov chains
hitting pseudorandom sets [22]. The idea is that, if two restrictions defining the regularity decomposition
agree in fewer than t coordinates, then we can impose a further restriction to make them agree in exactly t−1
coordinates, with no significant loss in measure by pseudorandomness. If our code is (t− 1)-avoiding these
restrictions must be cross intersecting, but Mossel’s result implies that this is impossible for pseudorandom
codes of non-negligible measure.

When m is large, one cannot obtain such a strong pseudorandomness condition in a regularity lemma,
so we settle for the weaker property of uncapturability. A family F ⊆ [m]n is said to be uncapturable if
it is not approximately contained in a union of constantly many “dictatorships”, i.e. families of the form
Di→j = {x ∈ [m]n |xi = j} for i ∈ [n] and j ∈ [m]. We stress here that m is not thought of as constant,
so one cannot fix i and take Di→j for all j ∈ [m]. Our regularity lemma in this case shows that any given
family F may be decomposed into pieces, such that each piece is uncapturable. This weaker regularity
lemma makes it significantly harder to establish the t-intersection property as outlined above in the case that
m is fixed; the main issue is that uncapturability may not be preserved by further restrictions.

Furthermore, if m is ‘huge’ (by which we will mean exponential in n) then the cross-agreement state-
ment used for fixed m is false. To see this, consider the codes E having all vectors with all coordinates even,
and O having all vectors with all coordinates odd. There is no non-zero agreement between E and O, yet
they are both highly uncapturable, and have measure 2−n (which is non-negligible when m is huge).

The above example naturally suggests a further case: we say m is ‘moderate’ if it is large but not huge.
In this case, the high-level proof strategy is the same as for fixed m, although the required cross-agreement
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statement for uncapturable codes is difficult to prove, and this is where we need the most significant new
ideas of the paper (gluing and global hypercontractivity). On the other hand, when m is huge, the above
example shows that we need a different proof strategy. Here we draw inspiration from more combinatorial
arguments of Keller and Lifshitz [18] which we adapt to the setting of codes by thinking of F ⊂ [m]n as
an n-partite n-graph (n-uniform hypergraph) with parts of size m. While the high-level strategy is similar
to that in [18], the implementation is quite different; for example, the key to bootstrapping in this case turns
out to be a subtle application of Shearer’s entropy inequality.

We write Sn,m,t for a largest family among {St,r[m]n : r ≥ 0}. From Theorem 1.2, we see that if
a (t − 1)-avoiding code F ⊂ [m]n is at least as large as Sn,m,t then it is close to a t-intersecting junta.
This raises the stability question for t-intersecting codes, which is the second ingredient in our proof of
Theorem 1.1: must this junta be close to an extremal result? When m is large compared with t, it is not hard
to show that such a junta must be close to a subcube of co-dimension t, i.e. the ball St,0[m]n. For fixed m,
the picture is more complex, and the full range of balls can occur; nevertheless, we are able to establish the
required stability version of the Ahlswede-Khachatrian anticode theorem.

Theorem 1.3. For every t ∈ N and ε > 0 there is δ > 0 such that if F ⊂ [m]n is t-intersecting with m ≥ 3
and |F| ≥ (1− δ)|Sn,m,t| then |F \S| 6 ε|S| for some family S which is isomorphic to Sn,m,t = St,r[m]n,
where 0 ≤ r ≤ t, and r = 0 if m > t+ 1.

The proof of Theorem 1.3 uses a local stability analysis of the compression operator of Ahlswede and
Khachatrian [2], and also the corresponding stability result for t-intersecting families in the p-biased hyper-
cube obtained by Ellis, Keller and Lifshitz [6].

Notation. Throughout the paper, we write [m] = {1, . . . ,m}. For any x, y ∈ [m]n we write agr(x, y) =
|{i ∈ [n] : xi = yi}|. We often identify a code F ⊂ [m]n with its characteristic function [m]n 7→ {0, 1}.

Given x ∈ [m]n and R ⊂ [n] we define xR ∈ [m]R by (xR)i = xi. Given disjoint R,R′ ⊂ [n] and
a ∈ [m]R, a′ ∈ [m]R

′
, we sometimes denote their concatenation in [m]R∪R

′
by (xR = a, xR′ = a′).

Given α ∈ [m]R for some R ⊂ [n] we write F [α] = {x ∈ F : xR = α} and F(α) = {x ∈ [m][n]\R :
(x, α) ∈ F}. We also often denote F(α) by FR→α.

For a coordinate i ∈ [n] and symbol a ∈ [m], we write Di→a for the subcube having all x ∈ [m]n for
which xi = a; we will also refer to this as a ‘dictator’. More generally, for R ⊂ [n] and a ∈ [m]R we write
DR→a = ∩i∈RDi→ai = {x ∈ [m]n : xR = a}.

Given F ⊂ [m]n and J ⊂ [n] we say that F is a J-junta if there is A ⊂ [m]J such that F = {x ∈
[m]n : xJ ∈ A}. When we do not wish to emphasize the set J itself, we instead refer to such families as
|J |-juntas.

We will deal with various product domains Ω = Ω1 × . . . × Ωn, mostly (but not only) with Ω = [m]n;
we reserve µ to denote the uniform distribution over the domain under discussion (which will be clear from
context). For any probability measure ν on Ω and F ⊂ Ω we write ν(F) =

∑
x∈F ν(x); similarly for

f : Ω→ R we write ν(f) = Ex∼νf(x) =
∑

x∈F ν(x)f(x).
We write a � b to mean that there is some a0(b) > 0 such that the following statement holds for

0 < a < a0(b).
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Part I

Small alphabets
This paper has two parts. We will consider small alphabets in this part and large alphabets in the second
part. Here we will prove our main result Theorem 1.1 when the alphabet size m is small, i.e. t and m are
fixed and n > n0(t,m) is large. This part of the paper will consist of three sections. In the next section we
prove Theorem 1.1 for fixed m, assuming three key steps of the proof (those described in the introduction).
These steps are then proven as separate theorems in sections 3 and 4.

We start with the junta approximation, for which the two key ingredients are (i) a regularity lemma,
which approximately decomposes any code into pieces which are pseudorandom (in a sense to be made
precise below), and (ii) a theorem of Mossel [22] on Markov chains hitting pseudorandom sets which implies
that we can find a pair of vectors with any fixed agreement between any two pseudorandom families (of non-
negligible measure).

In proving the stability version of the Ahlswede-Khachatrian anticode theorem, the first key observation
is that for codes that are compressed (in a sense to be defined below), there is a natural transformation of
the problem to the p-biased hypercube, where the stability theorem has already been proved by Ellis, Keller
and Lifshitz [6]. This may at first not seem helpful for a general stability result, as compresssion destroys
structure, but in fact we can make a local stability argument, that keeps control of the structure under gradual
decompression, and thus deduce the general stability result.

For the bootstrapping step, the main ingredient is a ‘cross disagreement’ theorem, where given two
families F and G we need to find x ∈ F and y ∈ G with agr(x, y) = 0. We need this result in the
unbalanced setting with µ(F) = 1 − α and µ(G) = β, where α and β are small, but α is large compared
with β. The idea for overcoming this obstacle is to transform the problem via compressions to the setting
of cross-intersecting families F ′ and G′ in the p-biased hypercube, where p = 1/m ≤ 1/3. We then move
to the uniform (1/2-biased) measure, where by an isoperimetric lemma of Ellis, Keller and Lifshitz [7] the
measure of the family corresponding to G becomes much larger, so that a trivial bound implies that F ′ and
G′ cannot be cross-intersecting.

2 Proof summary

In this section we prove Theorem 1.1 for fixed m assuming the three theorems (junta approximation, an-
ticode stability, bootstrapping) mentioned in the overview above, which we now state formally. The first
theorem (junta approximation) proves Theorem 1.2 when J and n0 can depend on m and replaces the con-
clusion |F \ J | 6 η|J | by µ(F \J ) ≤ η, which is an equivalent form when m is fixed; it will then remain
to prove Theorem 1.2 for m > m0(t, η) sufficiently large (which we will do in Part II).

Theorem 2.1. For every η > 0 and t,m ∈ N withm ≥ 3 there are J and n0 in N such that if F ⊂ [m]n is a
(t−1)-avoiding code with n ≥ n0 then there is a t-intersecting J-junta J ⊂ [m]n such that µ(F \J ) ≤ η.

The second theorem (anticode stability) is equivalent to Theorem 1.3 for fixed m and t, as we can bound
µ(Sn,m,t) below by a constant.

Theorem 2.2. For every t ∈ N, m ≥ 3 and ε > 0 there is δ > 0 such that if F ⊂ [m]n is t-intersecting
with µ(F) > µ(Sn,m,t)− δ then µ(F \ S) 6 ε for some S which is isomorphic to some Sn,m,t = St,r[m]n,
where 0 ≤ r ≤ t, and r = 0 if m > t+ 1.
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The third theorem (bootstrapping) is an unbalanced cross disagreement theorem: it considers codes
G,H ⊂ [m]n where H is small and G is almost complete, and finds x ∈ F and y ∈ G with agr(x, y) = 0.
We state it in a form that will also be useful later in the case that m is moderately large.

Theorem 2.3. For every t ∈ N and C > 0 there is ε0 > 0 such that if 0 < ε < ε0 and G,H ⊂ [m]n with
µ(H) = m−tε and µ(G) > 1− Cε then agr(x, y) = 0 for some x ∈ G and y ∈ H.

Assuming these theorems, we now prove our main theorem for fixed m: the following is obtained from
Theorem 1.1 by allowing n0 to depend on m.

Theorem 2.4. For all t ∈ N and m ≥ 3 there is n0 ∈ N such that if F ⊂ [m]n is a (t − 1)-avoiding code
with n > n0 then |F| 6 |Sn,m,t|, with equality only when F is isomorphic to a ball.

Proof. Let 0 < n−1
0 � J−1 � δ � ε � t−1,m−1. Suppose F ⊂ [m]n is (t − 1)-avoiding with

|F| ≥ |Sn,m,t|. By Theorem 2.1 there is a t-intersecting J-junta J ⊂ [m]n such that |F \ J | 6 δ|J |. We
have µ(J ) > µ(F) − µ(F \ J ) ≥ µ(Sn,m,t) − δ. By Theorem 2.2 applied to J , there is a copy S of
µ(Sn,m,t) with µ(J \ S) 6 ε. Note that

0 ≤ ξ := µ(F \ S) ≤ µ(F \ J ) + µ(J \ S) ≤ δ + ε < 2ε.

Suppose for contradiction that ξ > 0. Without loss of generality, for some r ≤ t we can write

S = {x ∈ [m]n : |{i ∈ [t+ 2r] : xi = 1}| > t+ r}.

By averaging, there is α ∈ [m][t+2r] with |{i : αi = 1}| < t + r such that H := F[t+2r]→α has µ(H) >
µ(F \ S) = ξ. We can fix β ∈ [m]t+2r with |{i : βi = 1}| ≥ t + r such that agr(α, β) = t − 1. We have
µ((F \ S)[t+2r]→β) 6 mt+2rµ(F \ S) 6 m3tξ, so G := F[t+2r]→β has µ(G) > 1−m3tξ.

By Theorem 2.3, with C = m2t and mtξ in place of ε, we find x ∈ G and y ∈ H with agr(x, y) = 0.
However, this gives (α, y) and (β, x) in F with agr((α, y), (β, x)) = t− 1, which is a contradiction.

3 Junta approximation

In this section we prove the junta approximation theorem for fixed m, i.e. Theorem 2.1. Our first ingredient
is a regularity lemma, showing that any code can be approximately decomposed into a constant number of
pieces, each of which is pseudorandom, in the sense that restrictions of constant size do not significantly
affect the measure. This regularity lemma is similar in spirit to that in [6, Theorem 1.7]; we refer the reader
to section 1.2 of their paper for discussion how such results are related to the large literature on regularity
lemmas in Combinatorics.

The second ingredient is a result of Mossel [22] on Markov chains hitting pseudorandom sets, which
implies that any two pseudorandom codes F ,G ⊂ [m]n of non-negligible measure cannot be cross inter-
secting, i.e. we can find a ‘disagreement’ (x, y) ∈ F × G with agr(x, y) = 0. If F is (t − 1)-avoiding
this will imply agr(α, β) ≥ t for any pieces FT→α, FT→β of the regularity decomposition of F that are
pseudorandom and of non-negligible measure. Indeed, if we had agr(α, β) = t− 1− s with s ≥ 0 then we
could arbitrarily fix a further restriction S → γ with |S| = s to obtain pseudorandom families F(T,S)→(α,γ),
F(T,S)→(β,γ) that are cross intersecting, which is impossible. Here we are implicitly using the (important)
fact that pseudorandomness is preserved by constant size restrictions.
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3.1 The pseudorandom code regularity lemma

In this subsection we prove a regularity lemma which approximately decomposes any code into pieces that
are pseudorandom, in the sense of the following definition.

Definition 3.1. We say F ⊂ [m]n is (r, ε)-pseudorandom if for any R ⊂ [n] with |R| 6 r and a ∈ [m]R

we have |µ(FR→a)− µ(F)| 6 ε.

Lemma 3.2. For any r,m ∈ N and ε, δ > 0 there is D ∈ N such that for any F ⊂ [m]n with n ≥ D there
is T ⊂ [n] with |T | ≤ D such that Pra∈[m]T [FT→a is not (r, ε)-pseudorandom] 6 δ.

Proof. We construct T iteratively. Starting with T = ∅, we consider at each step the set A of a ∈ [m]T

for which FT→a is not (r, ε)-pseudorandom. For any a ∈ A we fix b(a) ∈ [m]Ra for some Ra ⊂ [n] with
|Ra| ≤ r such that

∣∣µ(F(T,Ra)→(a,b(a)))− µ(FT→α)
∣∣ > ε. If µ(A) 6 δ we are done; otherwise, we replace

T by Tnew = T ∪R where R =
⋃
a∈ARa and iterate.

We will argue that this process stops with |T | bounded by some function depending on m, r, δ and ε,
but not on n. To do so, we apply a standard ‘energy increment’ argument to the mean-square density

E(T ) = E
a∈[m]T

[
µ(FT→a)2

]
.

Clearly, E(T ) 6 1 for any T ⊂ [n], and E(T1) 6 E(T2) whenever T1 ⊂ T2 by Cauchy-Schwarz.
We will show that E(T ) increases significantly at each step of the process. Indeed, comparing E(Tnew)

and E(T ) term by term, we have

E(Tnew)− E(T ) = E
a∈[m]T

[
E

b∈[m]R

[
µ(F(T,R)→(a,b))

]2 − µ(FT→a)2

]
= E

a∈[m]T
[VarZa],

where we consider Za(b) = µ(F(T,R)→(a,b)) as a random variable determined by the random choice of
b ∈ [m]R. We have VarZa ≥ 0 for all a, and for any a ∈ A we have VarZa ≥ m−|Ra|ε2 > m−rε2 in light
of the restriction Ra → b(a). Therefore, E(Tnew) > E(T ) + µ(A)m−rε2 > E(T ) + δm−rε2.

In other words, as long as the process does not terminate, the energy function increases by at least
δm−rε2. As the energy is always at most 1, the process terminates after at most mr/δε2 steps. Each
restriction adds at most r new variables to T , so in each step |Tnew| 6 2|T | · r, and so the final size of T is
bounded by some function of m, r, δ and ε.

3.2 Markov chains hitting pseudorandom sets

In this subsection we discuss a special case of a result of Mossel [22] needed for the proof of our junta
approximation theorem for small alphabets, which can be formulated in terms of Markov chains hitting
pseudorandom sets. We start by summarising some properties of Markov chains (see [20] for an introduc-
tion). We will consider finite Markov chains, i.e. a sequence of random variables (Xi)i≥0 taking values in
a state space S (some finite set) described by a transition matrix T with rows and columns indexed by S,
where for any event E determined by (X0, . . . , Xi) with Xi = x we have P(Xi+1 = y | Xi = x) = Txy.
We also view T as an averaging operator on functions f : S → R, corresponding to matrix multiplication
when we view f as a vector in RS : we have (Tf)(x) = E[f(X1) | X0 = x] =

∑
y Txyf(y) = (Tf)x.

We will suppose T is irreducible (for any x, y ∈ S there is some k ∈ N with T kxy > 0) so there is a
unique stationary distribution (a probability distribution ν on S such that νT = ν). The stationary chain is
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obtained by letting X0 have distibution ν, and then each Xi has distribution ν. In the stationary chain we
have P(X0 = a,X1 = b) = Pab := νaTab. We say T is reversible if P is symmetric, i.e. Pab = Pba for
all a, b ∈ S (the name corresponds to the observation that the distribution of the stationary chain is invariant
under time reversal).

When T is reversible, it defines a self-adjoint operator on L2(S, ν), i.e. functions f : S → R with the
inner product 〈f, g〉 =

∑
x νxf(x)g(x), so L2(S, ν) has an orthonormal basis B of eigenfunctions of T .

We can write any f ∈ L2(S, ν) in the form f =
∑

b∈B cbb, and then Ef2 = 〈f, f〉 =
∑

b∈B c
2
b . The largest

eigenvalue is 1, and the corresponding eigenspace consists of constant functions on S. If Tf = λf with
λ 6= 1 then Ef := Ex∼νf(x) =

∑
x νxf(x) = 〈f, 1〉 = 0. The absolute spectral gap λ∗ is the minimum

value of 1− |λ| over all eigenvalues λ 6= 1; equivalently,

(1− λ∗)2 = sup{E(Tf)2 : Ef = 0,Ef2 = 1}.

Now we describe a special case of [22, Theorem 4.4], and for that we require a basic set-up. Let T
be a reversible, irreducible Markov chain acting on S = [m], and consider its tensor power T⊗n acting on
Ω = [m]n independently in each coordinate, i.e. with transition matrix T⊗nxy =

∏n
i=1 Txiyi . In essence, [22,

Theorem 4.4] asserts that if T has a constant spectral gap, and we have pseudorandom codes F ,G ⊂ [m]n

of noticeable measure, then sampling consecutive random states x, y of the stationary chain for T⊗n, we
have that x ∈ F , y ∈ G with significant probability.

Theorem 3.3. Let T be a reversible Markov chain on [m] with absolute spectral gap λ∗ > 0. Let ν denote
the stationary measure of T⊗n and x and y be consecutive random states of the stationary chain. Then
for any µ > 0 there are ε, c > 0 and r ∈ N such that if F ,G ⊂ [m]n are (r, ε)-pseudorandom with
ν(F), ν(G) > µ then P(x ∈ F , y ∈ G) > c.

For convenience of the reader, we outline below the (standard) derivation of Theorem 3.3 from existing
results in the literature.

Deriving Theorem 3.3 from [22, Theorem 4.4]. Let B = {b1, . . . , bm} be an orthonormal basis for
L2(S, ν) consisting of eigenvectors of T . We take b1 to be the trivial eigenvector, i.e. b1(s) = 1 for all
s ∈ S, which has eigenvalue 1. We remark that by the spectral gap of T , it follows that the eigenvalue
of each bj for j 6= 1 is at most 1 − λ∗. We will view each bi as a random variable on (S, ν), and in this
language we have that Ebibj = 1i=j . Using the basisB, we may find a basis forL2(Sn, ν⊗n) by tensorizing.
Namely, for each i ∈ [n] we take an independent copy of B, say bi = (bij : j ∈ [m]), and then our basis is

b = (bj1,...,jn)j1,...,jn∈[m], where bj1,...,jn =
n∏
i=1

biji , denoted by. We can thus represent any function on Ω as

a multilinear polynomial P (b) =
∑

α cαb
α where α ranges over [m]n and bα :=

∏
i b
i
αi .

This above view allows us to extend the definition of P to Rmn. A technical point to note, however,
is that even if our original function P was bounded on [m]n (in our case, it is even be Boolean valued),
the extension to Rmn may not be bounded. For this reason, one first applies a small noise on the function
P , i.e. considers Q(x) = T1−ηP (x) = Ex′∼1−ηx [P (x′)] where for each i ∈ [n] independently, x′i = xi
with probability 1 − η and otherwise x′i is resampled according to ν (η > 0 is to be thought of as a small
constant, much smaller than the spectral gap λ∗ of T ), and then truncates it. Namely, consider the multi-
linear extension of Q, Q(b) as defined above, and let P̃ (b) = Q(b) if 0 6 Q(b) 6 1, P̃ (b) = 1 if Q(b) > 1,
and otherwise P̃ (b) = 0.

Let x and y be sampled as consecutive random states of the stationary chain for T⊗n, and let f(b(x)) =
1x∈F , g(b(y)) = 1y∈G . Our goal is thus to prove a lower bound on Ex,y [f(b(x))g(b(y))]. The invariance

8

5 Jul 2021 13:56:07 BST

210705-Minzer Version 1 - Submitted to Proc. London Math. Soc.



principles of [23, 21, 22] allows one to establish non-trivial lower bounds on this quantity by considering its
“analog in Gaussian space”, provided that f, g are sufficiently random-like.

To be more precise, let us first consider bj1,...,jn(x) and bj′1,...,j′n(y) where x and y are sampled as
consecutive random states of the stationary chain for T⊗n. Thus Ebiji(x)bi

′

j′
i′

(y) is zero unless i = i′ and

ji = j′i′ , and then it is equal to the eigenvalue λji such that Tbji = λjbji . We now wish to define the
Gaussian analog of bj1,...,jn(x) and bj1,...,jn(y). Let Z = {z1, . . . , zm, z

′
1, . . . , z

′
m} be Gaussian variables

with the same covariance matrix. Namely, we take z1 = z′1 = 1, and z2, . . . , zm and z′2, . . . , z
′
m are

jointedly distributed standard Gaussian random variables such that z2, . . . , zm are independent, z′2, . . . , z
′
m

are independent, and E
[
zjz
′
j′

]
= E

[
bj(x)bj′(y)

]
= λj1j=j′ . We take n independent copies of Z, Zi =

{zi1, . . . , zim, zi
′
1, . . . , z

i′
m}, and then define zj1,...,jn =

n∏
i=1
ziji and z′j1,...,jn =

n∏
i=1
zi
′
ji . The random

variables zj1,...,jn , z′j1,...,jn are to be thought of as the Gaussian analogs of bj1,...,jn(x) and bj1,...,jn(y).
Building on [23], Mossel [21] showed that for f, g : [m]n → [0, 1] with “small enough influences”,2 one

has E [f(b(x)) · g(b(y))] is very close E
[
f̃(z)g̃(z′)

]
. The arguments in [22] establish the same statement

with the more relaxed condition that f and g are (r, ε)-pseudorandom (the term ‘resilient’ is used therein).
More precisely, Mossel showed that for all δ > 0, there are r ∈ N and ε > 0 (also depending on m and the
spectral gap λ∗, which are thought of as constants), such that

∣∣∣E [f(b(x)) · g(b(y))]− E
[
f̃(z)g̃(z′)

]∣∣∣ 6 δ.

For f̃ , the fact that f has averages at least µ implies, by the invariance principle (i.e. the above with
g = 1), that f̃ has average at least µ/2; similarly the average of g̃ is at least µ/2. Thus, E

[
f̃(z)g̃(z′)

]
>

c(λ∗, µ) > 0 by reverse hypercontractivity (see [14, Theorem A.78] for example), and as this is close to
E [f(b(x)) · g(b(y))], we get that E [f(b(x)) · g(b(y))] > c/2, establishing Theorem 3.3.

The following result is an immediate consequence of Theorem 3.3, applied with the Markov chain T on
[m] which at each step moves to a uniformly random state different from the current state (note that λ∗ > 0
when m ≥ 3, but this fails for m = 2).

Theorem 3.4. For every m > 3 and µ > 0 there are ε, c > 0 and r ∈ N such that if F ,G ⊂ [m]n are
(r, ε)-pseudorandom with µ(F), µ(G) > µ and (x, y) is a uniformly random pair in [m]n × [m]n with
agr(x, y) = 0 then P(x ∈ F , y ∈ G) > c; in particular, agr(x, y) = 0 for some (x, y) ∈ F × G.

3.3 Approximation by junta

We conclude this section by proving Theorem 2.1.

Proof of Theorem 2.1. Let t,m ∈ N with m ≥ 3 and η > 0, fix 0� n−1
0 � D−1 � r−1, ε� η, t−1,m−1

and suppose F ⊂ [m]n is (t− 1)-avoiding. By Lemma 3.2 we find T ⊂ [n] with |T | ≤ D such that

Pr
a∈[m]T

[FT→a is not (r, ε)-pseudorandom] 6 η/2.

We will show that the required conclusions of the theorem hold for the junta J = {x ∈ [m]n |xT ∈ J},
where

J =
{
α ∈ [m]T

∣∣FT→α is (r, ε/2)-pseudorandom and µ(FT→α) > η/2
}
,

2 We omit the definition of ‘influences’ for now, as we do not need it here, but it will reappear later in a more general context
when we discuss our theory of global hypercontractivity.
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i.e. that J is t-intersecting (equivalently, J is t-intersecting) and F is approximately contained in J .
To see that J is t-intersecting, suppose for contradiction we have α1, α2 ∈ J with agr(α1, α2) = t−1−s

with s ≥ 0. Fix S ⊂ [n] \ T of size s and x ∈ [m]S arbitrarily, and consider the families

Gi =
{
w ∈ [m][n]\(T∪S)

∣∣∣ (αi, x, w) ∈ F
}

for i = 1, 2. By definition of J both µ(Gi) > µ(Fαi) − ε/2 > η/3 and Gi is (r − t, ε)-pseudorandom. By
Theorem 3.4 we find (w1, w2) ∈ G1×G2 with agr(w1, w2) = 0. However, this gives (αi, x, wi) for i = 1, 2
in F with agreement t− 1, which is a contradiction.

It remains to bound µ(F \ J ) =
∑

α 6∈J m
−|T |µ(FT→α). We partition [m]T \ J into (B1, B2) where

B1 contains those α ∈ [m]T \ J with µ(FT→α) < η/2, and B2 = [m]T \ (B1 ∪ J). Clearly the contibution
to the sum from α ∈ B1 is at most η/2. For α ∈ B2, we note that FT→α is not (r, ε/2)-pseudorandom by
definition of J , so

∑
α∈B2

m−|T |µ(FT→α) ≤ µ(B2) < η/2 by choice of T . Thus µ(F \ J ) < η.

4 Compression, stability and bootstrapping

In this section we prove the anticode stability theorem for fixed m, i.e. Theorem 2.2, and the bootstrapping
result Theorem 2.3. Both rely on a compression procedure, introduced by Ahlswede and Khachatrian [2],
which modifies any code in such a way to use some symbol (say 1) ‘as much as possible’, while maintaining
its size and not reducing its minimum intersection size.

In the first subsection we will formally define compression and prove some of its well-known properties.
In the second subsection we prove the stability result for compressed codes, by reducing it to the correspond-
ing stability result for t-intersecting families in the biased hypercube obtained by Ellis, Keller and Lifshitz
[6]. We deduce Theorem 2.2 in the third subsection, via a decompression argument, in which we reverse
the compressions while keeping control of structure via a local stability argument. In the final subsection
we prove Theorem 2.3, by using compressions to reformulate the problem in terms of cross-intersecting
families in the biased hypercube.

4.1 Compression

For any i ∈ [n] and j ∈ [m] we define the compression operator Ti,j : [m]n → [m]n that replaces j by 1
in coordinate i if possible, i.e. for x ∈ [m]n we let Ti,j(x) = y ∈ [m]n where yr = xr for all r 6= i, and
yi = xi if xi 6= j or yi = 1 if xi = j. We also define a compression operator, also denoted Ti,j , on codes,
that replaces any vector x by Ti,j(x) unless the latter is already present, i.e.

Ti,j(F) = {x |Ti,j(x) ∈ F} ∪ {Ti,j(x) |x ∈ F} .

We also define Ti = Ti,2 ◦ Ti,3 ◦ . . . ◦ Ti,m for any i ∈ n, and T = T1 ◦ T2 ◦ . . . ◦ Tn. One can think of T as
trying to set as many coordinates as possible equal to 1. We call F ⊂ [m]n compressed if T (F) = F .

We need the following well-known facts about these compression operators.

Fact 4.1.
Let F ,G ⊂ [m]n, i ∈ [n] and j ∈ [m].

1. We have µ(T (F)) = µ(Ti,j(F)) = µ(F).

2. If F ,G are cross t-intersecting then so are Ti,j(F) and Ti,j(G), and so are T (F) and T (G). Further-
more, any x ∈ T (F), y ∈ T (G) have at least t common coordinates equal to 1.

10

5 Jul 2021 13:56:07 BST

210705-Minzer Version 1 - Submitted to Proc. London Math. Soc.



Proof. Assume without loss of generality that i = 1. To see that µ(Ti,j(F)) = µ(F), we consider any
x ∈ [m]n−1, note that vectors (a, x) with a ∈ [m] \ {1, j} are unaffected by Ti,j , and that Ti,j(F) and F
contain the same number of elements of {(1, x), (j, x)}. By iterating we deduce µ(T (F)) = µ(F).

Next, suppose for contradiction that F ,G are cross t-intersecting but T1,j(F) and T1,j(G) are not. Then
there are (a, x) ∈ Ti,j(F) and (b, y) ∈ Ti,j(G) with agr((a, x), (b, y)) < t. As F ,G are cross t-intersecting
we cannot have both (a, x) ∈ F and (b, y) ∈ G, so without loss of generality (a, x) = (1, x) was obtained
from (j, x) ∈ F . We must have (b, y) ∈ G, as otherwise (b, y) = (1, y) was obtained from (j, y) ∈ G,
but then (j, x) ∈ F and (j, y) ∈ G with agr((j, x), (j, y)) = agr((1, x), (1, y)) < t, contradiction. As
(j, x) ∈ F and (b, y) ∈ G we have agr((j, x), (b, y)) ≥ t, so b = j. As (b, y) ∈ Ti,j(G) we must have
(1, y) ∈ G. But now agr((j, x), (1, y)) < t gives a contradiction. Thus T1,j(F) and T1,j(G) are cross
t-intersecting. By iterating, so are T (F) and T (G).

Finally, suppose for contradiction that x ∈ T (F), y ∈ T (G) have fewer than t common coordinates
equal to 1. Let x′ be obtained from x by setting x′i = 1 if xi = yi 6= 1 or x′i = xi otherwise. Then
x′ ∈ T (F) but x′ and y only agree on coordinates i with xi = yi = 1, which contradicts T (F) and T (G)
being cross t-intersecting.

Next we will define a transformation from compressed codes in [m]n to monotone3 families in the cube
{0, 1}n that preserves minimum (cross) intersection size, and does not decrease the measure when we adopt
the p-biased measure on the cube with p = 1/m (as we will do throughout this section).

Definition 4.2. We define h : [m] → {0, 1} by h(1) = 1 and h(a) = 0 for all a 6= 1, and h⊗n : [m]n →
{0, 1}n by h⊗n(x) = (h(x1), . . . , h(xn)). For any F ⊂ [m]n we let F̃ = h⊗n(F) ⊂ {0, 1}n.

Fact 4.3. Suppose F ,G ⊂ [m]n are compressed.

1. The family F̃ is monotone and µp(F̃) > µ(F).

2. If F is t-intersecting then so is F̃ .

3. If F ,G are cross t-intersecting then so are F̃ , G̃.

Proof. The intersection statements are immediate from the final part of Fact 4.1. For monotonicity, consider
any x̃ ∈ F̃ and ỹ > x̃. Fix x ∈ F with h⊗n(x) = x̃, i.e. xi = 1 if and only if x̃i = 1. Define y ∈ [m]n by
yi = 1 if ỹi = 1 6= x̃i or yi = xi otherwise. Then y ∈ F , as F is compressed, and h⊗n(y) = ỹ, so ỹ ∈ F̃ .

To show µp(F̃) > µ(F) we consider intermediate product spaces {0, 1}r × [m]n−r with the measure
νr = µrp × µ, and intermediate families Fr = (h⊗r ⊗ I⊗n−r)(T (F)) for any r > 0. It suffices to show
νr+1(Fr+1) > νr(Fr) for any r > 0. We can write

νr+1(Fr+1)− νr(Fr) =
∑

x∈{0,1}r,y∈[m]n−r−1

µp(x)m−(n−r−1)(µp(Bx,y,r)− |Ax,y,r|/m),

where for 0 6 r 6 n and x ∈ {0, 1}r, y ∈ [m]n−r−1 we define

Ax,y,r = {a ∈ [m] | (x, a, y) ∈ Fr} , Bx,y,r = {a ∈ {0, 1} | (x, a, y) ∈ Fr+1} .

Thus it suffices to show µp(Bx,y,r) > |Ax,y,r|
m for all x, y. To see this, suppose first that |Ax,y,r| = 1. As

F is compressed we have Ax,y,r = {1}, so Bx,y,r = h(Ax,y,r) = {1} and µp(Bx,y,r) = p = |Ax,y,r|/m.
Otherwise, if |Ax,y,r| ≥ 2 we have Bx,y,r = h(Ax,y,r) = {0, 1}, so µp(Bx,y,r) = 1 ≥ |Ax,y,r|/m.

3We call A ⊂ {0, 1}n monotone if y ∈ G whenever x ∈ G and x 6 y coordinatewise.
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4.2 Stability when compressed

In this subsection we prove Theorem 2.2 for compressed families, using the corresponding stability result
for t-intersecting families in the biased hypercube obtained by Ellis, Keller and Lifshitz [6], which we start
by stating. Given n, p, t, let Sn,p,t denote a family St,r{0, 1}n ⊂ {0, 1}n with largest p-biased measure,
where r = 0, 1, . . . , t− 1 and

St,r{0, 1}n = {x ∈ {0, 1}n : |{i ∈ [t+ 2r] : xi = 1}| > t+ r}

The following is implied by [6, Theorem 1.10].4

Theorem 4.4. For every t ∈ N, ζ > 0 and ε > 0 there is δ > 0 such that if F ⊂ {0, 1}n is t-intersecting,
ζ 6 p 6 1

2 − ζ and µp(F) > (1 − δ)µ(Sn,p,t) then µp(F \ S) 6 εµ(S) for some copy S of Sn,p,t =
St,r{0, 1}n, where 0 ≤ r ≤ t if p ≤ 1/3, and r = 0 if p 6 1

t+1 − ζ.

Using Theorem 4.4 we can prove a weaker version of Theorem 2.2, with the additional assumption that
F is compressed. This version will be used in the next subsection to prove Theorem 2.2 as stated.

Claim 4.5. For every t ∈ N, m ≥ 3 and ε > 0 there is δ > 0 such that if F ⊂ [m]n is compressed and
t-intersecting with µ(F) > (1−δ)µ(Sn,m,t) then µ(F \S) 6 εµ(S) for some copy S of Sn,m,t = St,r[m]n,
where 0 ≤ r ≤ t, and r = 0 if m > t+ 1.

Proof. Suppose F ⊂ [m]n is compressed and t-intersecting with µ(F) > (1 − δ)µ(Sn,m,t), where δ �
m−1, t−1, ε. We consider F̃ ⊂ {0, 1}n given by Definition 4.2. By Fact 4.3, F̃ is t-intersecting, and
µp(F̃) > µ(F) > (1 − δ)µ(Sn,m,t) = (1 − δ)µp(Sn,p,t), where p = 1/m. By Theorem 4.4 we have
µp(F \ S̃) 6 εµ(S̃) for some copy S̃ of Sn,p,t = St,r{0, 1}n, where 0 ≤ r ≤ t (as p = 1/m ≤ 1/3) and
r = 0 if m > t+ 1 (taking ζ < 1

t+1 −
1
t+2 ).

We show that the conclusion of the claim holds for S = {x : h⊗n(x) ∈ S̃}, where h : [m]n → {0, 1}n
is as in Definition 4.2. To see this, first note that S is a copy of Sn,m,t. Furthermore, if x ∈ F \ S then
h(x) ∈ F̃ \ S̃ , and if x is uniformly random in [m]n then h⊗n(x) is distributed as µp, so

Pr
x∈[m]n

[x ∈ F \ S] 6 Pr
x∈[m]n

[
h⊗n(x) ∈ F̃ \ S̃

]
= µp(F̃ \ S̃) 6 εµp(S̃) = εµ(S).

4.3 Decompression and local stability

In this subsection we prove Theorem 2.2 in general, deducing it from the compressed case proved in the
previous subsection, and for that we use decompression and local stability arguments. We start with a
proof sketch, where for simplicity we assume that m > t + 1, so that the extremal examples are cubes of
co-dimension t.

SupposeF ⊂ [m]n is t-intersecting with size close to the maximum possible. Let G = T (F) be the com-
pressed form of F . By the previous subsection, G is close to a subcube, say S = {x |x1 = . . . = xt = 1}.

We now decompress: we consider how the family changes as we undo the compression operators one
by one. First we note that undoing Tn, Tn−1, . . . , Tt+1 does not change the distance from S, so Gt =
T1 ◦ . . . ◦ Tt(F) has the same distance to S as G.

The main point of the argument is to analyze the effect of undoing Ti for i = 1, . . . , t. For j ∈ [m]
we let αj be the fraction of Gt−1 with prefix (1t−1, j). If there is some j? with αj? close to 1 then Gt−1

4We state it in a weaker form where we do not specify the exact dependency between parameters, as we do not require this.
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is close to a subcube, and we can continue decompressing. Otherwise, we can partition most of Gt−1 into
two non-negligible parts such that the value of j in the prefix (1t−1, j) always differs between the two parts.
However, as F is t-intersecting, this implies that the two parts must be cross-intersecting on the coordinates
[n] \ [t]; this will give a contradiction by the following form of Hoffman’s bound (which we will prove later
in a more general form, see Lemma 5.9).

Lemma 4.6. Suppose G1,G2 ⊂ [m]n are cross-intersecting with µ(Gi) = αi for i = 1, 2. Then α1α2 ≤
(1− α1)(1− α2)/(m− 1)2.

We start with a lemma that applies Lemma 4.6 to implement the idea discussed in the previous paragraph.
Recall that the largest intersecting codes in [m]n are the ‘dictators’ Di→j = {x : xi = j}. We show that
if A,B ⊂ [m]n have nearly maximum size, are cross-intersecting and Ti(A), Ti(B) ⊂ Di→1, then there is
some dictator Di→j that essentially contains A and B. Recall that p = 1/m throughout.

Lemma 4.7. Let 0 < ε 6 1/15 andm > 3. SupposeA,B ⊂ [m]n are cross-intersecting with µ(A), µ(B) >
(1−ε)p and Ti(A), Ti(B) ⊂ Di→1. Then there is j ∈ [m] such that µ(A∩Di→j), µ(B∩Di→j) > (1−3ε)p.

Proof. Without loss of generality we can assume i = 1. As T1(A) ⊂ D1→1 we can write T1(A) as the
disjoint union over j ∈ [m] ofAj := {(1, z) : z ∈ A1→j}; in particular,A1, . . . ,Am are disjoint. Similarly,
we may define B1, . . . ,Bm and have that B1, . . . ,Bm are disjoint. For each j ∈ [m] let αj = µ(A1→j) and
βj = µ(B1→j). Then

∑
j αj = p−1µ(A) > 1 − ε and

∑
j βj = p−1µ(B) > 1 − ε. We need to show that

for some j ∈ [m] we have αj , βj > 1− 3ε.
To see this, suppose without loss of generality that α = α1 is largest among {αj}j∈[m] ∪ {βj}j∈[m]. Let

B6=1 :=
⋃
j∈[2,m] Bj and β 6=1 = µ(B6=1). Then β 6=1 =

∑
j 6=1 βj ≥ 1 − ε − β1 > 1 − α1 − ε. As A1 and

B6=1 are cross-intersecting, by Lemma 4.6 we have

α1(1− α1 − ε) 6 α1β6=1 6 (1− α1)(β1 + ε)/(m− 1)2 ≤ (1− α1)(α1 + ε)/(m− 1)2.

Rearranging gives
(
(m−1)2−1

)
α1(1−α1) 6

(
(m−1)2α1 +(1−α1)

)
ε 6 (m−1)2ε. Thus α1(1−α1) 6

4ε/3, so either α1 6 3ε or α1 > 1− 3ε. We will show that the second bound holds.
Suppose otherwise. Then αj 6 3ε for all j ∈ [m]. We can partition [m] as Q1 ∪Q2 so that for k = 1, 2

we have
∑

j∈Qk αj > (1 − ε − 3ε)/2 > 1/2 − 2ε. Without loss of generality
∑

j∈Q1
βj > 1/2 − ε.

Then ∪j∈Q1Bj and ∪j∈Q2Aj cross-intersect and both have densities at least 1/2 − 2ε in [m]n−1, which
contradicts Lemma 4.6, as ε 6 1/15. Thus α1 > 1 − 3ε, as required. Now we apply Lemma 4.6 again to
A1 and B6=1, which gives (1− 3ε)β6=1 6 α1β 6=1 6 (1− α1 + ε)β1/(m− 1)2 6 1

44ε · 1 = ε, so β 6=1 6 2ε.
As β1 > (1− ε)− β 6=1 this gives β1 > 1− 3ε, completing the proof.

We conclude this subsection with the proof of the stability theorem.

Proof of Theorem 2.2. Let 0 < δ � ε′ � ε, t−1,m−1. Suppose F ⊂ [m]n is t-intersecting with µ(F) >
(1 − δ)µ(Sn,m,t). We can assume without loss of generality that for each i ∈ [n], the most popular value
of xi for x ∈ F is 1 (otherwise we simply relabel the alphabet in that coordinate). We set F0 = F
and for each i ∈ [n] let Fi = Ti(Fi−1). By Fact 4.1, Fn = T (F0) is t-intersecting, compressed, and
µ(Fn) > (1 − δ)µ(Sn,m,t). By Claim 4.5, µ(F \ S) 6 ε′µ(S) for some copy S of Sn,m,t = St,r[m]n,
where 0 ≤ r ≤ t, and r = 0 if m > t + 1. We write J for the set of coordinates on which it depends, so
|J | = t+ 2r.

We define εi for all i ∈ [n] by µ(Fi ∩S) = (1− εi)µ(S). We note that µ(F) = µ(Fn) 6 (1 + ε′)µ(S)
and µ(Fn ∩ S) > (1 − ε′ − δ)µ(S) > (1 − 2ε′)µ(S), so εn 6 2ε′. We will show inductively that
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εi is suitably small for i = n, n − 1, . . . , 0. To prove the theorem, it suffices to show ε0 < ε/2, as
µ(F \ S) 6 µ(F)− µ(F ∩ S) 6 (1 + ε′)µ(S)− (1− ε0)µ(S) 6 2ε0µ(S).

Note that if i /∈ J then S is i-insensitive, meaning that for all x ∈ [m]n membership of x in S does not
depend on xi. For such i we have |Ti(G)∩S| = |G ∩S| for any G ⊂ [m]n, so µ(Fi−1∩S) = µ(Fi∩S), i.e.
εi = εi−1. For i ∈ J we will show that εi−1 6 3(t + 1)3tεi. This will imply ε0 < (3(t + 1)3t)|J |ε′ < ε/2
as ε′ � ε, and so will suffice to complete the proof of the theorem.

Set Ji := J \ {i}. Given y ∈ [m]Ji and D ⊂ [m]n, we use the abbreviation

D(y) := DJi→y =
{
z ∈ [m][n]\Ji

∣∣∣ (y, z) ∈ D} ⊂ [m][n]\Ji .

We require the following claim, showing that if two Ji-restrictions Fi(y1) and Fi(y2) are close to the same
i-dictator, where y1, y2 have agreement at most t− 1, then this is also true of Fi−1(y1) and Fi−1(y2).

Claim 4.8. Suppose y1, y2 ∈ [m]Ji with agr(y1, y2) 6 t − 1 and µ(Fi(yk) ∩ Di→1) > (1 − ξ)p for both
k = 1, 2, where 0 6 ξ 6 1/6. Then there is j ∈ [m] such that both µ(Fi−1(yk) ∩ Di→j) > (1 − 3ξ)p.
Moreover, for any j′ 6= j, both µ(Fi−1(yk) ∩Di→j′) < (1− 3ξ)p.

Proof. Note that Fi−1(y1) and Fi−1(y2) are cross-intersecting, as Fi−1 is t-intersecting and agr(y1, y2) 6
t−1. LetAk = {x ∈ Fi−1(yk) : Ti(x) ∈ Fi(yk)∩Di→1} for k = 1, 2. ThenA1,A2 are cross-intersecting
and both µ(Ak) > (1− ξ)p, so the existence of j follows from Lemma 4.7.

For the ‘moreover’ part, note that if j′ 6= j, then (Fi−1)J→(y1,j′) and (Fi−1)J→(y2,j) are cross-intersecting,
and applying Lemma 4.6 gives us that µ((Fi−1)J→(y1,j′)) < 1− 3ξ. The same argument works interchang-
ing the roles of y1 and y2, and we get that µ(Fi−1(yk) ∩Di→j′) < (1− 3ξ)p.

Using Claim 4.8 we now bound εi−1. We start with the case r = 0. Let 1 ∈ [m]Ji be the all-1 vector.
We have µ(Fi(1) ∩ Di→1) = p1−tµ(Fi ∩ S) = (1 − εi)p, so by Claim 4.8 with y1 = y2 = 1 there is
j ∈ [m] such that µ(Fi−1(1) ∩Di→j) ≥ (1 − 3εi)p. The most popular value in Fi−1 of coordinate i is 1
(since this is the case in F), so j = 1. We deduce µ(Fi−1 ∩ S) = pt−1µ(Fi−1(1) ∩Di→1) ≥ (1− 3εi)p

t,
so εi−1 ≤ 3εi.

It remains to consider r ≥ 1. We have m 6 t+ 1 by Claim 4.5. For a vector y ∈ [m]n and j ∈ [m], let
y[j] be the set of coordinates of i equal to j. We partition S as S = S0 ∪ S1, where

S0 :=
{
x ∈ [m]n : x|Ji ∈ G0

}
, G0 := {y ∈ [m]Ji : |y[1]| > t+ r − 1},

S1 =
{
x ∈ [m]n : x|Ji ∈ G1

}
∩Di→1, G1 := {y ∈ [m]Ji : |y[1]| = t+ r − 1}.

As S0 is i-insensitive, µ(Fi−1 ∩ S0) = µ(Fi ∩ S0). Now we wish to show that µ(Fi−1 ∩ S1) is large, i.e.
that µ(Fi−1(y) ∩Di→1) is close to 1 for each y ∈ G1. First we show this for Fi.

Claim 4.9. µ(Fi(y) ∩Di→1) > (1− (t+ 1)3tεi)p for each y ∈ G1.

Proof. To see this, we note that

εiµ(S) = µ(S \ Fi) ≥ µ(S1 \ Fi) =
∑
y∈G1

p|Ji|(p− µ(Fi(y) ∩Di→1)).

Each summand on the right hand side is non-negative, and |J | = t + 2r 6 3t, so for each y ∈ G1 we have
p− µ(Fi(y) ∩Di→1)) ≤ p(t+ 1)3tεi, so the claim holds.
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Next we prove the corresponding claim for Fi−1, although at first just with Di→j for some j ∈ [m];
the theorem will follow once we show that j = 1. We say that y ∈ G1 is j-good if µ(Fi−1(y) ∩Di→j) >
(1− 3(t+ 1)3tεi)p.

Claim 4.10. There is some j ∈ [m] such that every y ∈ G1 is j-good.

Proof. Note that for any y, y′ ∈ G1 with agr(y, y′) = t − 1, by Claims 4.8 and 4.9 there is some j ∈ [m]
such that both y and y′ are j-good. The claim then follows from the observation that the graph G whose
edges consist of such pairs {y, y′} is connected. (We can get between any two elements of G1 by a sequence
of steps where in each step we change some coordinate from 1 to another value and some coordinate from
another value to 1, and each such step can be implemented by a path of length two in G.)

It remains to show that j = 1. We consider T = T0 ∪ T1, where T0 = {y ∈ [m]n | yJi ∈ G0} = S0 and
T1 = {y ∈ [m]n | yJi ∈ G1, yi = j}. Recalling that µ(Fi−1 ∩ S0) = µ(Fi ∩ S0), by the previous claim we
deduce µ(Fi−1 ∩ T ) > (1− 3(t+ 1)3tεi)µ(T ), so

µ(Fi−1 \ T ) 6 µ(Fi−1)− µ(Fi−1 ∩ T ) 6 3(t+ 1)3tεi + ε′ 6 4(t+ 1)3tεi,

where in the second inequality we used µ(Fi−1) = µ(F) 6 (1 + ε′)µ(S) = (1 + ε′)µ(T ). Hence, for
` 6= j the fraction of x ∈ Fi−1 such that xi = ` is at most 4(t + 1)3tεi + q(`), where q(`) is the fraction
of x ∈ T that have xi = `; by symmetry, this value is the same for all ` 6= j, and we denote it by q.
The fraction of x ∈ Fi−1 such that xi = j is, for the same reasons, is at least q(j) − 4(t + 1)3tεi. But
q(j) > q + µ(G1) > q + (t + 1)−3t, so q(j) − 4(t + 1)3tεi > q + 4(t + 1)3tεi (we can ensure εi < 1/8).
Thus j is the most popular value of coordinate i in Fi−1, so j = 1, as required.

4.4 Bootstrapping

We conclude this part by proving Theorem 2.3, which completes the proof of Theorem 2.4. We will use
compressions to reduce to the cube, so we start with some remarks in this setting.

We consider {0, 1}n equipped with the uniform measure µ. Suppose A,B ⊂ {0, 1}n. We say A,B are
cross-intersecting if for any x ∈ A, y ∈ B there is i ∈ [n] such that xi = yi = 1. We say A,B are cross-
agreeing if for any x ∈ A, y ∈ B there is i ∈ [n] such that xi = yi. Clearly if A,B are cross-intersecting
then they are cross-agreeing. We have the following easy fact, which is immediate from the observation that
if A,B are cross-agreeing and x+ y = 1 (the all-1 vector) then we cannot have x ∈ A and y ∈ B.

Fact 4.11. If A,B ⊂ {0, 1}n are cross-agreeing then µ(A) + µ(B) 6 1.

We also require the following isoperimetric lemma of Ellis, Keller and Lifshitz [7].

Lemma 4.12. Suppose 0 6 p 6 q 6 1, α > 0 and F ⊂ {0, 1}n is monotone. If µp(F) > pα then
µq(F) > qα.

Proof of Theorem 2.3. Let G,H ⊂ [m]n with µ(H) = m−tε and µ(G) > 1−Cε, where 0� ε� t−1, C−1.

Suppose for contradiction that G andH are cross-agreeing. Let G′ = T̃ (G) andH′ = T̃ (H), where T is the
compression operator and the operator F → F̃ is from Definition 4.2. By Facts 4.1 and 4.3, G′ and H′ are
monotone and cross-intersecting with µp(G′) ≥ µ(G) and µp(H′) ≥ µ(H), where p = 1/m.

Now we consider G′ and H′ under the uniform measure µ = µ1/2. By monotonicity we have µ(G′) ≥
µp(G′) > 1 − Cε. By Lemma 4.12, µ(H′) ≥ µp(H′)logp(1/2), so log2 µ(H′) ≥ log2(m−tε)/ log2(m),
giving µ(H′) ≥ 2−tε0.7, as m ≥ 3 and 1/ log2(3) < 0.7. However, 1−Cε+ 2−tε0.7 > 1 as ε� t−1, C−1,
which contradicts Fact 4.11.
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Part II

Large alphabets
In this part we prove our main result Theorem 1.1 when the alphabet sizem is large, i.e.m > m0(t). We note
that in this case Sn,m,t = {x ∈ [m]n : xT = α} for some T ⊂ [n] with |T | = t and α ∈ [m]T . As mentioned
in the introduction, we cannot achieve such a strong pseudorandomness condition in our regularity lemma as
in the case of fixed m, so we settle for a weaker notion of ‘uncapturability’. We also recall that the strategy
for fixedm based on cross-agreements between pieces of the regularity decomposition cannot work whenm
is ‘huge’ (exponential in n), so we give a different (more combinatorial) argument for this case in Section 7.
The bulk of this part is concerned with the case that m is ‘moderate’ (large but not huge), which we analyse
in the second section, via a version of the cross-agreement strategy implemented by a gluing argument that
exploits expansion under another pseudorandomness condition, namely globalness. The tools for this are
developed in the first section, in which we study our two pseudorandomness conditions (uncapturability and
globalness) and establish the small-set expansion for global functions via a refined version of our global
hypercontractivity inequality from [15].

5 Tools

This section concerns various properties of the pseudorandomness notions of uncapturability and globalness,
particularly a regularity lemma for uncapturability and a small set expansion property for global functions,
which is analogous to Theorem 3.3. The latter will be established via a corresponding statement for the
noise operator, which will be proved by a refined form of our global hypercontractivity inequality. Along
the way we record various facts needed here and later concerning Markov chains and the Efron-Stein theory
of orthogonal decompositions.

5.1 Uncapturability and globalness

This subsection contains the definitions and basic properties of the two key pseudorandomness conditions
used in this part. We start with uncapturability, which is the condition that will appear in the regularity
lemma in the next subsection. Recall that for F ⊂ [m]n and α ∈ [m]R for some R ⊂ [n] we write
F [α] = {x ∈ F : xR = α} and FR→α = F(α) = {x ∈ [m][n]\R : (x, α) ∈ F}. We also write
DR→α = {x ∈ [m]n : xR = α}, which is a subcube of co-dimension |R|, which we refer to as a ‘dictator’
if |R| = 1. For a collection of subcubes D, we denote by

⋃
D the union of these subcubes, i.e.

⋃
D∈DD.

Definition 5.1. We say F ⊂ [m]n is (r, ε)-capturable if there is a set D of at most r dictators with µ(F \⋃
D) 6 ε. Otherwise, we say F is (r, ε)-uncapturable.

Now we define the stronger (see Claim 5.4) condition of globalness.

Definition 5.2. We say f : [m]n → R is (r, ε)-global if for any R ⊂ [n] with |R| ≤ r and a ∈ [m]R we
have ‖fR→a‖22 6 ε. We say F ⊂ [m]n is (r, ε)-global if its characteristic function is (r, ε)-global.

Most of this section will be devoted to the proof of the following small set expansion property for global
functions, which is analogous to Theorem 3.3. We remark that we will later use Theorem 5.3 to prove that
random gluings significantly increase the measure of global families.
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Theorem 5.3. For any λ > 0 there is c > 0 such that the following holds for Markov chains Ti on Ωi with
λ∗(Ti) ≥ λ for all i ∈ [n] and consecutive random states x, y of the stationary chain for the product chain
T on Ω. If F ⊂ Ω is (log(1/µ), µ1−c)-global with µ ∈ (0, 1/16) then P(x ∈ F , y ∈ F) 6 µ1+c.

We begin by giving two simple relations between uncapturability and globalness that will be useful for
us. The first property asserts that globalness implies very strong uncapturability.

Claim 5.4. If γ ∈ (0, 1) and ∅ 6= G ⊂ [m]n is (1, µ(G)/γ)-global then G is (γm/4, µ(G)/2)-uncapturable.

Proof. Suppose D is a set of dictators with µ(G \
⋃
D) 6 µ(G)/2. We need to show |D| > γm/4. By

assumption µ(Gi→a) 6 µ(G)/γ for each Di→a ∈ D, so by a union bound

µ(G)/2 6 µ(G ∩
⋃
D) 6

∑
Di→a∈D

µ(G ∩Di→a) =
∑

Di→a∈D
m−1 · µ(Gi→a) 6 |D|m−1µ(G)

γ
.

Thus |D| > γm/2 > γm/4, as required.

The second property shows that any family G with significant measure can be made global by taking
small restrictions.

Lemma 5.5. Let 0 < γ < 1 and r,m, n ∈ N. For any G ⊂ [m]n there is R ⊂ [n] and α ∈ [m]R with
|R| 6 r logγ−1(µ(G)−1) such that G′ = GR→α is (r, µ(G′)/γ)-global with µ(G′) ≥ µ(G).

Proof. Starting with G0 = G, for each i ≥ 0, if Gi is not (r, µ(Gi)/γ)-global we let Gi+1 = (Gi)Ri→αi for
some Ri ⊂ [n] with |Ri| ≤ r and αi ∈ [m]Ri such that µ(Gi+1) > µ(Gi)/γ; such a restriction exists by
definition. As all measures are bounded by 1 there can be at most logγ−1(µ(G)−1) iterations, at which point
we terminate with G′ = GR→α with the stated properties.

5.2 The uncapturable code regularity lemma

In this subsection we prove the following regularity lemma which approximately decomposes any code into
pieces corresponding to uncapturable restrictions.

Lemma 5.6. Let r, k,m ∈ N and ε > 1/m. For anyF ⊂ [m]n there is a collectionD of at most rk subcubes
of co-dimension at most k such that FR→α is (r, εµ(D)−1m−k)-uncapturable for each D = DR→α ∈ D
and µ(F \

⋃
D) ≤ 3rk+1εm−k.

Proof. We may assume F is (r, εm−k)-capturable, otherwise the lemma holds withD = {[mn]}. We apply
the following iterative process for s = 1, . . . , k.

• We let D′s−1 be the set of D = DR→α ∈ Ds−1 such that FR→α is (r, εµ(D)−1m−k)-capturable,
where for s = 1 we let D′0 = D0 = {D∅→∅} = {[m]n}.

• For each D = DR→α ∈ D′s−1, by definition of capturability we can fix a set D[D] of at most r
dictators such that µ(FR→α \

⋃
D[D]) 6 εµ(D)−1m−k.

• We define Ds = {D(R,i)→(α,a) : D = DR→α ∈ D′s−1, Di→a ∈ D[D]}.
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At the end of the process, we let D′k ⊂ Dk be the set of D = DR→α ∈ Dk such that FR→α is (r, ε)-
capturable. We will show that D = (D1 \ D′1) ∪ . . . ∪ (Dk \ D′k) satisfies the requirements of the lemma.

Clearly, for all D ∈ D we have that F ∩ D is (r, εµ(D)−1m−k)-uncapturable, and |D| ≤ rk as we
explore at most this many subcubes during the above process. We will bound µ(F \

⋃
D) by µ(F \

⋃
(D ∪

D′k)) + µ(F ∩
⋃
D′k).

For the first term in the bound, we write F \
⋃

(D ∪D′k) = ∪k−1
s=0Es, where each

Es =
⋃
{FR→α \

⋃
D[D] : D = DR→α ∈ D′s}.

By definition, µ(Es) 6
∑

D∈D′s µ(D) · εµ(D)−1m−k = |D′s|εm−k, so

µ(F \
⋃

(D ∪D′k)) ≤ εm−k
k−1∑
s=0

|D′s| ≤ rkεm−k.

For the second term in the bound, we note that if DR→α ∈ D′k then FR→α is (r, ε)-capturable, so has
measure is at most r 1

m + ε 6 (r + 1)ε. Thus

µ(F ∩
⋃
D′k) 6

∑
D∈D′k

µ(D)(r + 1)ε 6 rkm−k(r + 1)ε.

We deduce µ(F \
⋃
D) 6 µ(F \

⋃
(D ∪D′k)) + µ(F ∩

⋃
D′k) 6 3rk+1εm−k.

5.3 Markov Chains and Orthogonal Decompositions

This subsection contains some further theory of Markov Chains, Efron-Stein orthogonal decompositions
and a general form of the Hoffman bound for cross-intersecting families in any product space. The results
are somewhat standard, but we include details for the convenience of the reader.

Let T be a Markov chain on S with stationary distribution ν. The absolute spectral gap λ∗ = λ∗(T ) is

(1− λ∗)2 = sup{E(Tf)2 : Ef = 0,Ef2 = 1}.

Here expectations are with respect to ν. If T is reversible we can also view λ∗ as the minimum value of
1− |λ| over all eigenvalues λ 6= 1. We start with a general lower bound for λ∗.

Lemma 5.7. Let T be a Markov chain on S with stationary distribution ν such that Tab ≥ αν(b) for every
a, b ∈ S. Then λ∗(T ) ≥ α.

Proof. By assumption, Sab := Tab − αν(b) ≥ 0, with
∑

b Sab = 1− α and
∑

a ν(a)Sab = (1− α)ν(b).
If Ef = 0 and Ef2 = 1 then by Cauchy-Schwarz

E(Tf)2 =
∑
a

ν(a)(Tf)(a)2 =
∑
a

ν(a)(
∑
b

Tabf(b))2 =
∑
a

ν(a)
(∑

b

Sabf(b)
)2

6
∑
a

ν(a)
(∑

b

Sab
)(∑

b

Sabf(b)2
)

= (1− α)
∑
a

ν(a)
∑
b

Sabf(b)2

= (1− α)
∑
b

f(b)2
∑
a

ν(a)Sab = (1− α)2
∑
b

ν(b)f(b)2 = (1− α)2.
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Now we consider Markov chains Ti acting on Ωi for i ∈ [n] and their tensor product T = T1⊗ · · · ⊗Tn
acting on Ω = Ω1 ⊗ · · · ⊗ Ωn, with transition matrix Txy =

∏n
i=1(Ti)xiyi . The stationary distribution of T

is ν = ν1 ⊗ · · · ⊗ νn, where each νi is stationary for Ti. We will often have Ω = [m]n and ν uniform, but
we will also require the general setting.

We use the Efron-Stein orthogonal decomposition (see e.g. [25, Section 8.3]): for any f ∈ L2(Ω, ν)
we can write f =

∑
S⊂[n] f

=S , where each f=S is characterised by the properties that it only depends on
coordinates in S and that it is orthogonal to any function which depends only on some set of coordinates not
containing S; in particular, f=S and f=S′ are orthogonal for S 6= S′. We have similar Plancherel / Parseval
relations as for Fourier decompositions, namely 〈f, g〉 =

∑
S E

[
f=Sg=S

]
, so E[f2] =

∑
S E

[
(f=S)2

]
.

Explicitly, we let f⊂J(x) = Ey∼ν [f(y) | yJ = xJ ] and then we have f=S =
∑

J⊂S(−1)|S\J |f⊂J (the
inclusion-exclusion formula for f⊂J =

∑
S⊂J f

=S). We note the following identity which is immediate
from this construction.

Fact 5.8. For S ⊂ T ⊂ [n], x ∈ ΩS and f ∈ L2(Ω, ν) we have (f=T )S→x = (fS→x)=T\S .

We require the following general form of the well-known Hoffman bound (the uniform case was used in
Part I, see Lemma 4.6). We include the proof for completeness.

Lemma 5.9. Let ν =
∏n
i=1 νi be a product probability measure on [m]n such that νi(x) 6 λ 6 1/2 for all

i ∈ [n], x ∈ [m]. Suppose G1,G2 ⊂ [m]n are cross-intersecting with ν(Gi) = αi for i = 1, 2. Then

α1α2 6

(
λ

1− λ

)2

(1− α1)(1− α2).

The proof of Lemma 5.9 requires the following estimate.

Claim 5.10. Let Ui be Markov chains on Ωi for i ∈ [n] and let U be the product chain on Ω. For any
f : Ω→ R and S ⊂ [n] we have

∥∥Uf=S
∥∥

2
6
∥∥f=S

∥∥
2

∏
i∈S

(1− λ∗(Ui)).

Proof. Since f=S does not depend on variables outside S, we may assume without loss of generality that
S = [n]. We introduce interpolating operators U6j =

⊗j
i=1 Ui ⊗

⊗n
i=j+1 Ii, where Ii is the identity, and

gj = U6jf
=S for 0 6 j 6 n. It suffices to show ‖gj‖2 6 (1− λ∗(Uj)) ‖gj−1‖2 for j ∈ [n].

We calculate ‖gj‖22 = E(Ujgj−1)2 by conditioning on z ∈ Ω[n]\{j}, i.e.

E(Ujgj−1)2 = E
z∼ν[n]\{j}

[
E(Ujhz)2

]
,

where hz := (gj−1)[n]\{j}→z ∈ L2(Ωj , νj). Note that for each z,

E
x∼νj

[hz(x)] = E
x∼νj

[
(U6j−1f

=S)(z, x)
]

= U6j−1

(
E

x∼νj

[
f=S(z, x)

])
= U6j−10 = 0,

so E(Ujhz)
2 ≤ (1 − λ∗(Uj))

2Eh2
z . As EzEh2

z = Eg2
j−1 we get ‖gj‖2 6 (1 − λ∗(Uj)) ‖gj−1‖2, as

required.

Proof of Lemma 5.9. For each i ∈ [n] we consider the Markov chain Ui on [m] with transition probabilities
(Ui)xx = 0 and (Ui)xy = νi(y)/(1− νi(x)) for y 6= x. We claim that

1− λ∗(Ui) ≤
λ

1− λ
. (1)
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This holds as for any f ∈ L2([m], νi) with Ef = 0 and Ef2 = 1 we have

‖Uif‖22 =
∑
x

νi(x)

∑
y 6=x

νi(y)

1− νi(x)
f(y)

2

=
∑
x

νi(x)

(1− νi(x))2

∑
y 6=x

νi(y)f(y)

2

=
∑
x

νi(x)

(1− νi(x))2
(νi(x)f(x))2 6

(
λ

1− λ

)2∑
x

νi(x)f(x)2 =

(
λ

1− λ

)2

.

Next we note that if x ∼ ν and y ∼ Ux then P(x ∈ G1,y ∈ G2) = 0, as agr(x,y) = 0 by definition of
U , but G1,G2 are cross-intersecting by assumption. We can also write this probability as 〈g1, Ug2〉, where
g1, g2 : [m]n → {0, 1} are the indicator functions of G1,G2. By orthogonality and Cauchy-Schwarz,

0 =
∑
S⊂[n]

〈g=S
1 , Ug=S

2 〉 = α1α2 +
∑
S 6=∅

〈g=S
1 , Ug=S

2 〉 > α1α2 −
∑
S 6=∅

∥∥g=S
1

∥∥
2

∥∥Ug=S
2

∥∥
2
.

By Claim 5.10 and (1) we have
∥∥Ug=S

2

∥∥ 6
(

λ
1−λ

)|S| ∥∥g=S
2

∥∥, so

α1α2 6
∑
S 6=∅

(
λ

1− λ

)|S| ∥∥g=S
1

∥∥
2

∥∥g=S
2

∥∥
2
6

λ

1− λ
∑
S 6=∅

∥∥g=S
1

∥∥
2

∥∥g=S
2

∥∥
2
.

By Cauchy-Schwarz and Parseval∑
S 6=∅

∥∥g=S
1

∥∥
2

∥∥g=S
2

∥∥
2

2

6
∑
S 6=∅

∥∥g=S
1

∥∥2

2

∑
S 6=∅

∥∥g=S
2

∥∥2

2
= Var(g1) Var(g2) = α1(1− α1)α2(1− α2).

We deduce (α1α2)2 6
(

λ
1−λ

)2
α1α2(1− α1)(1− α2), as required.

5.4 Small set expansion via noise stability

The goal for the remainder of this section is to prove Theorem 5.3 concerning global small set expansion.
We start by reducing it to the case of a particular Markov chain, namely that given by the noise operator,
which we will now define. Let ν =

∏n
i=1 νi be a product probability measure on Ω =

∏n
i=1 Ωi. Fix

ρ ∈ [0, 1]. We let Ti be the Markov chain on Ωi with transition probabilities (Ti)xy = ρ1y=x+(1−ρ)νi(y),
i.e. from any state x we stay at x with probability ρ or otherwise move to a random state according to νi.
We let T be the product chain on Ω. We also write T = Tρ. We call Tρ the noise operator when we think
of it as an operator on L2(Ω, ν) via (Tρf)(x) = Ey∼Tρx [f(y)].

Recall that in Theorem 5.3 we want to bound P(x ∈ F , y ∈ F) for some F ⊂ Ω, when x and y are
consecutive states of the stationary chain for some product chain U on Ω. The analytic form is to bound
〈f, Uf〉 where f is the characteristic function of F . We will soon see that this can be bounded by an
analogous expression in terms of the noise operator, i.e. Stabρ(f) := 〈f,Tρf〉, which is called the noise
stability of f . For future reference we note the following estimate showing that a bound on the noise stability
for any given ρ > 0 implies one for all ρ < 1.

Lemma 5.11. Stabρ(f) ≤ ‖f‖2(1−1/t)
2 Stabρt(f)1/t whenever t = 2d with d ∈ N.
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Proof. By Cauchy-Schwarz we have

Stabρ(f) = 〈f, Tρf〉 6 ‖f‖2 ‖Tρf‖2 = ‖f‖2
√

Stabρ2(f).

The lemma follows by iterating this estimate.

We also need the following well-known formulae for the noise operator and stability.

Fact 5.12. Tρf(x) =
∑
S⊂[n]

ρ|S|f=S(x) and Stabρ(f) =
∑
S⊂[n]

ρ|S|
∥∥f=S

∥∥2

2
.

The following lemma reduces showing small set expansion of a general chain U to that of the noise
operator, provided that we have a uniform lower bound on the absolute spectral gap in each coordinate.

Lemma 5.13. Let U =
∏n
i=1 Ui be a product chain on Ω =

∏n
i=1 Ωi with each λ∗(Ui) > λ. Then for all

f : Ω→ R we have 〈f, Uf〉 6 Stab1−λ(f).

Proof. We use the orthogonal decomposition f =
∑

S⊂[n] f
=S . We note that 〈f=S , Uf=T 〉 can only be

non-zero if S = T , as Uf=T only depends on coordinates in T . Thus

〈f, Uf〉 =
∑
S⊂[n]

〈f=S , Uf=S〉 6
∑
S⊂[n]

∥∥f=S
∥∥

2

∥∥Uf=S
∥∥

2
.

Applying Claim 5.10 and Fact 5.12 completes the proof.

By Lemma 5.13, to prove Theorem 5.3 it remains to prove the following corresponding global small set
expansion theorem for the noise operator.

Theorem 5.14. For every ρ < 1 there is c > 0 such that if f : Ω→ {0, 1} is (log(1/µ), µ1−c)-global with
µ ∈ (0, 1/16) then Stabρ(f) 6 µ1+c.

A key ingredient in the proof is the following lemma proved in the next subsection via global hyper-
contractivity. First we introduce some notation. Given an orthogonal decomposition f =

∑
S⊂[n] f

=S and
r ≥ 0 we write f≤r =

∑
|S|≤r f

=S and f>r = f − f≤r. We say f has degree (at most) r if f = f≤r.

Lemma 5.15. For any ρ 6 1/80, if f : Ω→ R is (r, β)-global of degree r then

‖Tρf‖4 6 β1/4 ‖f‖1/22 .

Proof of Theorem 5.14. We start by showing that there exist ρ′, c′ > 0 such that the statement of the theorem
holds with (ρ′, c′) in place of (ρ, c). We take ρ′ = 2−200 and c′ = 1/100. First we note that by globalness
(applied with no restriction) we have µ(f) = E[f2] ≤ µ.99. Let d = bc′ log(1/µ)c. We have

Stabρ(f) =
∑
S⊂[n]

ρ|S|
∥∥f=S

∥∥2

2
6
∑
|S|6d

ρ|S|
∥∥f=S

∥∥2

2
+ ρd+1

∥∥∥f>d∥∥∥2

2
= 〈f, Tρf6d〉+ ρd+1

∥∥∥f>d∥∥∥2

2
.

Clearly ρd+1
∥∥f>d∥∥2

2
≤ 2−2 log(1/µ) = µ2. By Holder’s inequality

〈f, Tρf6d〉 6 ‖f‖4/3
∥∥∥Tρf6d∥∥∥

4
6 µ.99 ‖f‖1/22 ≤ (µ.99)3/2,

using Lemma 5.15 and ‖f‖4/3 = µ(f)3/4 (as f is Boolean), so Stabρ(f) 6 (µ.99)3/2 + µ2 6 µ1.01.
Now we will deduce the full version of Theorem 5.14, i.e. for any ρ < 1 there is c > 0 such that the

statement holds. We let d = dlog(ρ/ρ′)e, t = 2d and c = c′/4t. By Lemma 5.11 we have Stabρ(f) 6

‖f‖2(1−1/t)
2 Stabρt(f)1/t. We have Stabρt(f) ≤ Stabρ′(f) by monotonicity of ρ 7→ Stabρ(f) and ρt ≤ ρ′.

By globalness µ(f) = E[f2] ≤ µ1−c, so Stabρ(f) 6 µ(1−c)(1−1/t)+(1+c′)/t = µ1−c+(c′+c)/t 6 µ1+c.
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5.5 Noise stability via global hypercontractivity

As mentioned in the previous subsection, in this subsection we will prove the noise stability estimate Lemma
5.15. We start with some definitions required to state our global hypercontractivity inequality. As before,
we consider a product measure ν =

∏n
i=1 νi on Ω =

∏n
i=1 Ωi. For S ⊂ [n] we let νS denote the product

measure
∏
i∈S νi on ΩS =

∏
i∈S Ωi.

Given f ∈ L2(Ω, ν) with orthogonal decomposition f =
∑

S⊂[n] f
=S and T ⊂ [n], the Laplacian of f

according to T is the function LT f : [m]n → R defined by

(LT f)(x) =
∑
S⊇T

f=S(x).

If T is a singleton {i}, we denote the Laplacian by Li. We also require the following alternative, more
combinatorial, definition of the Laplacian. We let L∅ be the identity operator. For i ∈ [n], it is easily noted
that

(Lif)(x) = f(x)− E
ai∼νi

[f(x1, . . . , xi−1,ai, xi+1, . . . , xn)].

Then, for T = {i1, . . . , id} with d > 2, one can show that LT may be defined alternatively by composition,
i.e. LT f = Lid(Lid−1

(. . . (Li1f) . . .)). It is not hard to check that this definition does not depend on order
in which the Laplacians are taken and is equivalent to the definition via orthogonal decompositions.

In the next subsection we will prove the following refined version of the global hypercontractive in-
equality on product spaces from [15]. For simplicity we only consider the version required for our purposes,
where we bound the 4-norm after applying noise by a function of the 2-norms of the Laplacians.

Theorem 5.16. Let (Ω, ν) be a finite product space. Then for every f : Ω→ R and ρ 6 1/160 we have

‖Tρf‖44 6
∑
S⊂[n]

E
y∼νS

[
‖(LSf)S→y‖42

]
.

Along with Theorem 5.16, the proof of Lemma 5.15 also requires the following consequence of global-
ness for norms of Laplacians.

Claim 5.17. Let f : Ω → R be (r, ε)-global, T ⊂ [n] with |T | 6 r and y ∈ [m]T . Then ‖(LT f)T→y‖2 6
2|T |
√
ε.

The proof requires the following alternative formula for Laplacians.

Claim 5.18. For any f : Ω→ R, T ⊂ [n] we have (LT f)(z) =
∑
S⊂T

(−1)|S|Ea∼νS
[
f(xS = a, xS = zS)

]
.

Proof. We argue by induction on |T |. The claim is immediate from the definition for |T | = 0, 1. Let
|T | = d+ 1 > 2, and write T = T ′ ∪ {i} with |T ′| = d. Then by definition and the induction hypothesis

(LT f)(z) = Li(LT ′f)(z) = Li
∑
S⊂T ′

(−1)|S| E
a∼νS

[
f(xS = a, xS = zS)

]
.

By linearity and the definition of Li we deduce

(LT f)(x) =
∑
S⊂T ′

(−1)|S| E
a∼νS

[
f(xS = a, xS = zS)− E

b∼νi

[
f(xS = a, xi = b, x

S∪{i} = z
S∪{i})

]]
.

The claim follows as (a,b) is distributed according to νS∪{i}.
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Proof of Claim 5.17. By Claim 5.18 and globalness we have

(LT f)T→y(z) =
∑
S⊂T

(−1)|S| E
a∼νS

[
f(xS = a, xT\S = yT\S , xT = zT )

]
=
∑
S⊂T

(−1)|S| E
a∼νS

[
fT→(a,yT\S)(zT )

]
,

and taking norm over z and using the triangle inequality yields

‖(LT f)T→y‖2 6
∑
S⊂T

E
a∼νS

[∥∥∥fT→(a,yT\S)

∥∥∥
2

]
6 2|T |

√
ε.

We conclude this subsection with our estimate for noise stability of global functions.

Proof of Lemma 5.15. Suppose f : Ω→ R is (r, β)-global of degree r. Let ρ = 1/80. By Theorem 5.16∥∥Tρ/2f
∥∥4

4
6
∑
S⊂[n]

E
y∼νS

[ ∥∥(LST1/2f)S→y

∥∥4

2

]
.

By assumption on f we only need to consider |S| ≤ r, and for such S by Claim 5.17 we have ‖(LSf)S→y‖2 6

2|S|
√
β for all y ∈ ΩS . As

∥∥(LST1/2f)S→y
∥∥2

2
6 4−|S| ‖(LSf)S→y‖22 we deduce∥∥Tρ/2f

∥∥4

4
6 β

∑
S⊂[n]

E
y∼νS

[ ∥∥(LST1/2f)S→y

∥∥2

2

]
.

We estimate each summand using Parseval as

E
y∼νS

[ ∥∥(LST1/2f)S→y

∥∥2

2

]
=
∑
T⊇S

4−|T |
∥∥f=T

∥∥2

2
6
∑
T⊇S

2−|T |
∥∥f=T

∥∥2

2
,

so β−1
∥∥Tρ/2f

∥∥4

4
6
∑
S⊂[n]

∑
T⊇S

2−|T |
∥∥f=T

∥∥2

2
=
∑
T⊂[n]

∥∥f=T
∥∥2

2
= ‖f‖22 .

5.6 Global hypercontractivity

We conclude this section by proving Theorem 5.16, via our global hypercontractivity inequality from [15].
We start by stating this inequality, for which we require some notation. Let Z1, . . . ,Zn be independent
random variables, each with mean 0, variance 1 and E

[
|Zi|4

]
6 σ−2

i . For S ⊂ [n], we let ZS =
∏
i∈S

Zi and

σS =
∏
i∈S

σi. We consider multilinear functions g(Z1, . . . ,Zn) =
∑
S⊂[n]

aSZS with all aS ∈ R. For S ⊂ [n]

the discrete derivative of g at S is ∂Sg(Z) = 1
σS

∑
T⊇S

aTZT\S .

Theorem 5.19 (Theorem 7.1, [15]). In the above set up, for ρ ∈ [0, 1/16] we have ‖Tρg‖44 6
∑
S⊂[n]

σ2
S ‖∂Sg‖

4
2.

We will reduce Theorem 5.16 to Theorem 5.19 as follows. Suppose (Ω, ν) is a product space with
Ω = [m]n and f ∈ L2(Ω, ν). We will simulate f via a function g : {0, 1}nm → R which takes nm
biased random bits {zi,j}i∈[n],j∈[m], where the bias of zi,j is pi,j = νi(j)/4. Let σi,j =

√
pi,j(1− pi,j)
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and χi,j(zi,j) = (zi,j − p)/σi,j . We note that χi,j satisfy the conditions in the above setup, i.e. Eχi,j = 0,
Eχ2

i,j = 1, Eχ4
i,j ≤ σ−2

i,j . For any S ⊂ [n] and x ∈ ΩS we define the corresponding character χS,x :
{0, 1}nm → R for z = (zi,j : i ∈ [n], j ∈ [m]) by setting χS,x(z) =

∏
i∈S

χi,xi(zi,xi); we also write

σS,x =
∏
i∈S

σi,xi . We then define g : {0, 1}nm → R by setting

g(z) =
∑
S⊂[n]

∑
x∈ΩS

σS,x
∣∣f=S(x)

∣∣χS,x(z).

Claim 5.20. ‖Tρf‖44 6 ‖T4ρg‖44.

Proof. Let S be the set of (S1, S2, S3, S4) where each Sα ⊂ [n] and |{α : i ∈ Sα}| 6= 1 for all i ∈ [n].
Expanding the definition of the left hand side, we can write

‖Tρf‖44 = E
x∼ν

 ∑
(S1,S2,S3,S4)∈S

ρ|S1|+...+|S4|f=S1(x) · · · f=S4(x)

.
Also, if S = (S1, . . . , S4) ∈ S and x ∈ Ω⋃

S then E
[∏4

α=1 σSα,xSαχSα,xSα

]
≥
∏
i∈

⋃
S(pi,xi/4) =

16−|
⋃
S|ν⋃S(x), using E[(σi,jχi,j)

q] ≥ pi,j/4 when q ∈ {2, 3, 4}, so expanding the right hand side

‖T4ρg‖44 >
∑

S=(S1,S2,S3,S4)∈S

∑
x∈ΩS

(4ρ)|S1|+...+|S4|
∣∣f=S1(x)

∣∣ · · · ∣∣f=S4(x)
∣∣ 16−|

⋃
S|ν⋃S(x).

As |
⋃
S| ≤ (|S1|+ . . .+ |S4|)/2 the claim follows.

To bound ‖T4ρg‖44 we apply (4ρ)-biased hypercontractivity (Theorem 5.19), which is valid if 4ρ ≤
1/16. As σ2

S,x 6 νS(x) we get ‖T4ρg‖44 6
∑

S⊂[n],x∈ΩS

νS(x)
∥∥∂(S,x)g

∥∥4

2
. For any S ⊂ [n] and x ∈ ΩS we

have ∥∥∂(S,x)g
∥∥2

2
=

1

σ2
S,x

∑
T⊇S

∑
y∈ΩT\S

σ2
(T,x◦y)f

=T (x, y)2 6
∑
T⊇S

E
y∼νT\S

[
f=T (x,y)2

]
,

as σ−2
S,xσ

2
(T,x◦y) = σ2

T\S,y 6 νT\S(y). By Fact 5.8 and Parseval we get
∥∥∂(S,x)g

∥∥2

2
6 ‖(LSf)S→x‖22, so

‖Tρf‖44 6 ‖T4ρg‖44 6
∑

S⊂[n],x∈ΩS

νS(x) ‖(LSf)S→x‖42 =
∑
S⊂[n]

E
x∼νS

[
‖(LSf)S→x‖42

]
.

This proves Theorem 5.16.

6 Moderate alphabets

This section contains the proof of our main result Theorem 1.1 in the case of moderate alphabets, i.e.
m > m0(t) is large, but not huge (exponential in n). As discussed previously, the strategy is inspired by
that for small m, but we must settle for a regularity lemma (Lemma 5.6) that only provides parts which are
uncapturable, so the proof of the junta approximation theorem becomes considerably harder.
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As in the case of small m, we want to show that the restrictions defining the regularity decomposition
form a t-intersecting family, so we need to find cross-agreements of any fixed size between two pieces of the
decomposition. Again we can reduce to finding cross disagreements by taking restrictions, but this reduction
is not immediate as with the stronger pseudorandomness condition in the first part, as uncapturability is
not preserved by arbitrary restrictions. We therefore start in the first subsection by proving a ‘fairness
proposition’ showing that random restrictions are unlikely to significantly reduce the measure of a code if
it is non-negligible (for which the threshold is such that this is only useful when m is not huge). In the
second subsection we then complete the proof of the main theorem for moderate m assuming the junta
approximation theorem, and of the junta approximation theorem assuming the existence of fixed cross-
agreements between non-negligible uncapturable codes.

The idea for finding cross disagreements is to apply the global small set expansion theorem from the
previous section to show that for any code of small measure we can substantially increase its measure by a
combination of taking restrictions and applying a gluing operation, in which we pass to a smaller alphabet
by randomly identifying symbols in each coordinate. Here we note that any cross disagreement after gluing
must come from a cross disagreement before gluing (this is why we will reduce to disagreements, as we
do not have any corresponding statement for finding cross-agreements of some fixed non-zero size). By
applying Hoffman’s bound to the glued codes rather than the original codes we thus obtain a much stronger
bound on the original measures.

We develop the theory of gluings in the third subsection, which we use for measure boosting in the fourth
subsection. We then prove the existence of fixed cross-agreements in the final subsection. The concept of
globalness is fundamental throughout, as it is needed for measure boosting, and also to maintain some
pseudorandomness condition throughout the repeated restrictions needed for measure boosting. Indeed, as
uncapturability is not preserved by arbitrary restrictions, we need a careful combination of taking restrictions
and upgrading uncapturability to globalness. We must also take care to remove extraneous agreements that
may be introduced by these restrictions, which is possible as globalness implies uncapturability, and the
definition of uncapturability is designed for this argument.

6.1 The fairness proposition

Here we prove the following ‘fairness proposition’, analogous to that proved for hypergraphs by Keller and
Lifshitz [18]. The proofs are quite similar, but we include the details for the convenience of the reader.

Proposition 6.1. For any δ > 0 and s ∈ N there is C > 0 such that for any F ⊂ [m]n with µ(F) ≥ e−n/C ,
for uniformly random S ∈

(
[n]
s

)
and x ∈ [m]S we have P[µ(FS→x) ≥ (1− δ)µ(F)] ≥ 1− δ.

Proof. First we consider s = 1. For each i ∈ [n], let Vi = {a ∈ [m] |µ(Fxi→a) < (1− δ)µ(F)}.
We suppose for contradiction that the probability of the complementary event is too large, i.e. that

Pr
i∈[n],a∈[m]

[a ∈ Vi] =
1

nm

n∑
i=1

|Vi| > δ.

Let I =
{
i ∈ [n] | |Vi| > δ

2m
}

. We note that 1
nm

∑
i∈I
|Vi| > δ/2. We consider uniformly random

x ∈ [m]n and let Z = Z(x) = |{i : xi ∈ Vi}|. Then Z(x) =
∑

i∈I 1xi∈Vi is a sum of independent indicator
variables with mean

EZ =
∑
i∈I
|Vi|/m ≥ δn/2.

25

5 Jul 2021 13:56:07 BST

210705-Minzer Version 1 - Submitted to Proc. London Math. Soc.



Let F ′ be the set of x ∈ F such that |{i : xi ∈ Vi}| ≥ (1 − δ/2)EZ. By the Chernoff bound, µ(F ′) ≥
µ(F)− eΩδ(n) ≥ (1− δ/2)µ(F), provided C = C(δ, s) is sufficiently large.

Now we estimate E := E[Z(x)1x∈F ] in two ways. By definition of Vi we have

E = m−n
∑
x∈F

∑
i∈I

1xi∈Vi = m−n
∑
i∈I

∑
a∈Vi

|Fxi→a| ≤ m−1
∑
i∈I
|Vi|(1− δ)µ(F) = (1− δ)µ(F)EZ.

On the other hand, by definition of F ′ we have

E ≥ m−n
∑
x∈F ′

(1− δ/2)EZ = (1− δ/2)µ(F ′)EZ ≥ (1− δ/2)2µ(F)EZ.

These bounds are contradictory, so the proof for s = 1 is complete.
For s ≥ 2 we proceed by induction. We suppose that the statement holds for any δ′ > 0 and s′ < s

with C = C(δ′, s′). We let δ′ = δ/2 and s′ = s − 1 and consider uniformly random S′ ∈
([n]
s′

)
and

x′ ∈ [m]S
′
. By the induction hypothesis, which can be applied if we choose C(δ, s) > C(δ′, s′), we have

P[E1(S′,x′)] ≥ 1− δ′. where E1(S′,x′) is the event that µ(FS′→x′) ≥ (1− δ′)µ(F).
For each S′, x′ such that E1(S′, x′) holds we consider S = S′ ∪ {i} and x = (x′,a) ∈ [m]S for

uniformly random i ∈ [n] \ S′ and a ∈ [m]. We have µ(FS′→x′) ≥ (1 − δ′)µ(F) > e−(n−s+1)/C(δ′,1) for
large C(δ, s). Applying the base case to FS′→x′ we have P[E2(S,x)] ≥ 1− δ′. where E2(S,x) is the event
that µ(FS→x) ≥ (1− δ′)µ(FS′→x′). With probability at least (1− δ′)2 ≥ 1− δ both E1 and E2 hold, and
we then have µ(FS→x) ≥ (1− δ′)2µ(F) ≥ (1− δ)µ(F), as required.

6.2 Proof summary

In this subsection we complete the proof of the main theorem for moderate m assuming the junta approxi-
mation theorem, and of the junta approximation theorem assuming the existence of fixed cross-agreements
between non-negligible uncapturable codes. As m is large, the largest ball is a subcube of co-dimension t,
so we can restate our main result for moderate m as follows.

Theorem 6.2. For any t ∈ N there are m0, N ∈ N such that if m > m0, n > N logm and F ⊂ [m]n is
(t− 1)-avoiding then |F| ≤ mn−t, with equality only when F is a subcube of co-dimension t.

We will prove Theorem 6.2 assuming the following junta approximation theorem.

Theorem 6.3. For every t, k ∈ N there exist C,m0, N ∈ N such that if F ⊂ [m]n is (t− 1)-avoiding with
m > m0 and n > N logm then there is a t-intersecting collectionD of at mostC subcubes of co-dimension
at most k such that µ(F \

⋃
D) 6 Cm−k.

Proof of Theorem 6.2. Suppose F ⊂ [m]n is (t − 1)-avoiding with µ(F) > m−t. By Theorem 6.3 there
is a t-intersecting collection D of Ot(1) subcubes of co-dimension at most t + 1 such that µ(F \

⋃
D) 6

Ot(1)m−(t+1). As D is t-intersecting, its subcubes all have co-dimension at least t. Let D′ consist of the
subcubes in D that have co-dimension t. Then µ(

⋃
D \

⋃
D′) ≤ Ot(1)m−(t+1). As Ot(1)m−(t+1) <

m−t ≤ µ(F) for large m we must have D′ 6= ∅. Thus D′ consists of exactly one subcube of co-dimension
t, say S = {x ∈ [m]n |x1 = 1, . . . , xt = 1}.

Write µ(F[t]→1) = 1 − ε, where 0 ≤ ε = mtµ(S \ F) ≤ mtµ(F \ S) ≤ Ot(m
−1). Suppose for

contradiction ε > 0. We claim that ε > e−2n/m. To see this, fix any a ∈ F \ S (using ε > 0). Write
|{i ∈ [t] : ai = 1}| = t− 1− s with s ≥ 0, fix any S ⊂ [n] \ [t] with |S| = s, and let R = [n] \ ([t] ∪ S).
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For b = aS and c ∈ [m]R with agr(c, aR) = 0, we have (1t, b, c) /∈ F (since (1t, b, c) and a agree on t− 1
coordinates), giving |S \ F| ≥ (m− 1)n−t−s, so ε ≥ (1− 1/m)n−t−s > e−2n/m, as claimed.

As µ(F \ S) ≥ m−tε, by averaging, we can fix 1t 6= x ∈ [m]t with µ(F[t]→x) ≥ m−tε. Write
|{i ∈ [t] : ai = 1}| = t − 1 − s with s ≥ 0. Consider uniformly random S ∈

(
[n]\[t]
s

)
and y ∈ [m]S. Let

G = F[t]→1,S→y and H = F[t]→x,S→y. By Markov’s inequality, P[µ(G) ≥ 1− 2ε] ≥ 1/2. By Proposition
6.1, P[µ(H) ≥ .9m−tε] ≥ .9. Thus we can fix (S, x) so that µ(G) ≥ 1−2ε and µ(H) ≥ .9m−tε. However,
G andH are cross intersecting, so this contradicts Theorem 2.3. Thus ε = 0, as required.

We conclude this subsection by proving Theorem 6.3 assuming the following result on cross-agreements
between uncapturable codes, the proof of which will be the goal of the remainder of this section.

Theorem 6.4. For any s, k ∈ N there are r,m0, N ∈ N such that if m ≥ m0, n ≥ N logm and Aj ⊂
[m][n]\Rj are (r,m−k)-uncapturable with |Rj | ≤ k for j = 1, 2 then there are xj ∈ Aj for j = 1, 2 with
|{i ∈ [n] \ (R1 ∪R2) : x1

i = x2
i }| = s.

Proof of Theorem 6.3. Suppose r,m,N � t, k and F ⊂ [m]n with n > N logm is (t − 1)-avoiding. By
Lemma 5.6 with ε = 1 there is a collection D of at most rk subcubes of co-dimension at most k such that
FR→α is (r,m−k)-uncapturable for each D = DR→α ∈ D and µ(F \

⋃
D) ≤ 3rk+1εm−k. Suppose for a

contradiction thatD is not t-intersecting. Then there areDRj→αj ∈ D for j = 1, 2 (not necessarily different)
that agree on t − 1 − s coordinates for some s ≥ 0. Let A1 = FR1→α1 \

⋃
i∈R2\R1 Di→α2

i
⊂ [m][n]\R1

and defineA2 similarly. ThenA1,A2 are (r− k,m−k)-uncapturable, so by Theorem 6.4 there are xj ∈ Aj
with |{i ∈ [n] \ (R1 ∪ R2) : x1

i = x2
i }| = s. But then agr((α1, x1), (α2, x2)) = t − 1, which is a

contradiction.

6.3 Gluings and expansion

In this subsection we introduce our gluing operation and establish a small set expansion property for global
codes under random gluings.

Definition 6.5. Let k < m ∈ N and b ≥ 1. A b-balanced gluing from [m] to [k] is a function π : [m]→ [k]
such that

∣∣π−1(i)
∣∣ ≤ bm/k for all i ∈ [k]. We let Πm,k,b denote the set of all such gluings. If b = 1 (which

is only possible when k | m) we may omit it from our notation.
A b-balanced gluing of [m]n to [k]n is a mapping π : [m]n → [k]n of the form π(x1, . . . , xn) =

(π1(x1), . . . , πn(xn)) with π1, . . . , πn ∈ Πm,k,b. We let Π⊗nm,k,b denote the set of all such gluings; we may
omit the superscript if n is clear from context. For F ⊂ [m]n and π ∈ Π⊗nm,k,b we write Fπ = π(F) ⊂ [k]n.

Example 6.6. Consider the gluing π : [3]n → [2]n where for each i ∈ [n] we have πi(1) = πi(2) = 1 and
πi(3) = 2. Let F =

{
x ∈ [3]n | |{ i |xi = 1 ∨ xi = 2}| > 2

3n
}

. Then F has constant measure in [3]n, but
Fπ has exponentially small measure in [2]n.

This example indicates that we should make a careful choice of measure in [k]n for gluing to be useful.

Definition 6.7. Given a measure ν on [m] and π : [m] → [k], we define a measure νπ on [k] by νπ(x) =∑
y∈π−1(x) ν(y). Given a product measure ν =

∏n
i=1 νi on [m]n and π = (π1, . . . , πn) with each πi :

[m] → [k] we define a product measure νπ =
∏n
i=1 ν

π
i on [k]n by (νπ)i = (νi)

πi =
∑

y∈π−1
i (x) ν(y) for

each i. We say ν is b-balanced if νi(x) ≤ b/m for all i ∈ [n] and x ∈ [m].

Claim 6.8. With notation as in Definition 6.7, for any F ⊂ [m]n we have νπ(Fπ) > ν(F).
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Proof. For any y ∈ [k]n we have

νπ(y) =
n∏
i=1

νπi (yi) =
n∏
i=1

∑
xi∈π−1

i (yi)

νi(xi) =
∑

x∈π−1(y)

n∏
i=1

νi(xi) =
∑

x∈π−1(y)

ν(x), so

νπ(Fπ) =
∑
y∈[k]n

νπ(y)1y∈Fπ =
∑
y∈[k]n

∑
x∈π−1(y)

ν(x)1y∈Fπ >
∑
y∈[k]n

∑
x∈π−1(y)

ν(x)1x∈F = ν(F).

Now we establish global small set expansion for random balanced gluings.

Lemma 6.9. With notation as in Definitions 6.5 and 6.7, there is c > 0 such that the following holds. Let
s, k,m ∈ N be such that k = m/s and s > 4, let ν be an s-balanced product measure on [m]n, and suppose
F ⊂ [m]n is (log(1/µ), µ1−c)-global with µ ∈ (0, 1/16). Then Eπ∈Π⊗nm,k

[νπ(Fπ)] > ν(F)1−c.

Proof. The plan for the proof is to show Eπ[νπ(Fπ)] ≥ ν(F)2/〈f, Tf〉, where f is the characteristic
function of F and T =

∏n
i=1 Ti is some product Markov chain on [m]n with each λ∗(Ti) ≥ 1/6. By

Theorem 5.3 this will suffice to establish the lemma.
To construct T , we first consider for each π the operator T ↑π : L2([m]n, ν) → L2([k]n, νπ) defined by

T ↑πf(y) = Ex∼ν [f(x) |π(x) = y] for any y ∈ [k]n. Note that ν(F) = ν(f) = νπ(T ↑πf), as if y ∼ νπ and
x ∼ ν | π(x) = y then x ∼ ν. Writing fπ for the characteristic function of Fπ, by Cauchy-Schwarz we

can bound ν(F)2 = Eπ

[
νπ(T ↑πf)

]2
as

E
π

[
νπ(T ↑πf)

]2
= E

π

[
〈T ↑πf, fπ〉νπ

]2
6 E

π

[∥∥∥T ↑πf∥∥∥
2,νπ
‖fπ‖2,νπ

]2

6 E
π

[∥∥∥T ↑πf∥∥∥2

2,νπ

]
E
π

[
‖fπ‖22,νπ

]
.

We note that Eπ

[
‖fπ‖22,νπ

]
= Eπ [νπ(Fπ)] is the expression that we wish to bound. We write

E
π

[∥∥∥T ↑πf∥∥∥2

2,νπ

]
= E

π
y∼νπ
x,x′∼ν

[
f(x)f(x′)

∣∣π(x) = π(x′) = y
]

= 〈f, Tf〉,

where T is the reversible Markov chain on [m]n characterised by the property that two consecutive states
x,x′ of its stationary chain are distributed as independent samples from ν conditioned on π(x) = π(x′) =
y, where π ∼ Π⊗nm,k and y ∼ νπ. We note that each of x,x′ then has marginal distribution ν, which
is therefore the stationary distribution. As coordinates are independent, we can write T =

∏n
i=1 Ti as a

product chain. To complete the proof, it remains to show each λ∗(Ti) ≥ 1/6. By Lemma 5.7 it suffices to
prove the following claim.

Claim 6.10. For any i ∈ [n] and a, b ∈ [m] we have pi(a, b) := P(xi = a,x′i = b) > 1
6νi(a)νi(b).

To see this, we expand out the definition to write

pi(a, b) = E
π

∑
j∈[k]

νπi (j)1π(a)=π(b)=j
νi(a)

νπi (j)

νi(b)

νπi (j)

 = νi(a)νi(b)
∑
j∈[k]

E
π

[
1π(a)=π(b)=j

1

νπi (j)

]
.
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Each P(π(a) = π(b) = j) = 1
k
s−1
m−1 > 1

2k2
, so by Jensen’s inequality

pi(a, b) >
νi(a)νi(b)

2k2

∑
j∈[k]

E
π

[
1

νπi (j)

∣∣∣∣ π(a)=j,

π(b)=j

]
>
νi(a)νi(b)

2k2

∑
j∈[k]

1

Eπ [νπi (j) |π(a) = π(b) = j]
.

As π−1(j) consists of a, b and s− 2 uniformly random elements from [m] \ {a, b} we have

E
π

[νπi (j) |π(a) = π(b) = j] = νi(a) + νi(b) +
s− 2

m− 2

∑
x 6=a,b

νi(x) 6 νi(a) + νi(b) +
s

m
6

3

k
,

as each νi(y) ≤ s/m = 1/k. Thus pi(a, b) > 1
2k2
νi(a)νi(b)

∑
j∈[k]

k
3 = 1

6νi(a)νi(b). This completes the
proof of the claim, and so of the lemma.

6.4 Boosting measure

In this subsection we apply the small set expansion properties of random gluings established in the previous
subsection to prove the following result, which shows that the measure of any small code can be substantially
increased via restrictions and gluings.

Lemma 6.11. For every ε > 0 there is C > 0 such that for any b-balanced product measure ν on [m]n

with 4 ≤ b ∈ N and m > b3C , if F ⊂ [m]n with ν(F) = µ < 16−1/ε then there are π ∈ Πm,m′,b with
m′ > m/b2C+1 and α ∈ [m′]R, where R ⊂ [n] with |R| < C log(µ−1), such that νπ((Fπ)R→α) > µε.

Proof. We start by applying an arbitrary b-balanced gluing π0 ∈ Π⊗nm,m0,b
, where m0 is the largest power of

b that is at most m. Clearly ν0 := νπ0 is b2-balanced. We let F0 = Fπ0 ⊂ [m0]S0 , where S0 = [n]. By
Claim 6.8 we have µ0 := ν0(F0) > µ.

Now we apply the following iterative procedure for i ≥ 0. Given Fi ⊂ [mi]
Si , where S0 = [n], with

νi(Fi) = µi ≥ µ and νi is a b2-balanced product measure,

1. if µi > µε we stop, otherwise,

2. if Fi is not (log(1/µi), µ
1−c
i )-global according to νi, where c > 0 is as in Lemma 6.9, then by

definition we can choose Fi+1 = (Fi)Ri→αi ⊂ [mi+1]Si+1 with µi+1 = νi+1(Fi+1) ≥ µ1−c
i , where

mi+1 = mi, νi+1 = νi and Si+1 = Si \Ri for some Ri with |Ri| ≤ log(1/µi) and αi ∈ [mi]
Ri ,

3. otherwise, as µi < µε ≤ 1/16, by Lemma 6.9 we can choose Fi+1 = (Fi)πi ⊂ [mi+1]Si+1 with
mi+1 = mi/b

2, Si+1 = Si, π ∈ Πmi,mi+1 , and µi+1 = νi+1(Fi+1) ≥ µ1−c
i , where νi+1 = νπii .

If C > C0(ε, c) is large then this process terminates in at most C steps, with some Fr ⊂ [mr]
Sr , where

mr ≥ m/(b2C+1) and Sr = [n]\R, whereR is the union of all setsRi in the process, so |R| ≤ C log(1/µ).
For i ≥ 0 we let πi→r ∈ Πmi,mr be obtained by composing all πj with i < j ≤ r. We define α ∈ [mr]

R

by αx = πi→r((αi)x) for x ∈ Ri. We let π = π0→r and note that νπ = νr and Fr ⊂ (Fπ)R→α, so
νπ((Fπ)R→α) ≥ νr(Fr) ≥ µε.

6.5 Uncapturable codes agree

In this subsection we prove our cross-agreement result for uncapturable codes, Theorem 6.4. As demon-
strated in Subsection 6.2, this will complete the proof of our main theorem for moderate alphabets. We
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start with an outline of the proof. We are given two uncapturable codes A1 and A2 and need to find a
cross-agreement of some fixed size s. Moreover, the coordinate sets may be slightly different: we have
Aj ⊂ [m][n]\Rj with |Rj | ≤ k for j = 1, 2.

Step 1: Globalness. We would like to restrict to a common coordinate set, but we cannot do so imme-
diately, as uncapturability is not closed under restrictions. We therefore start by upgrading to globalness,
while avoiding unwanted agreements. We find a global code A′1 obtained from A1 by a small restriction.
We obtain A′2 from A2 by removing any agreements with this restriction, using uncapturability to see that
A′2 is not negligible, and find a global code B2 obtained from A′2 by a small restriction. Then we obtain a
global code B1 from A′1 by removing any agreements with this restriction.

Step 2: Fairness. By the fairness proposition, we find a common restriction of size s by which we obtain
non-negligible global codes C1, C2 from B1,B2. It remains to show that C1, C2 cannot be cross-agreeing.

Step 3: Expansion. We apply measure boosting to find a gluing and restriction so that C2 becomes some
C′2 with dramatically larger measure. We obtain C′1 from C1 by removing any extra agreements created by the
gluing and restriction, and then C′′1 with non-negligible measure by applying the gluing that were found for
C2. We now find a gluing and restrictions for C′′1 to get from it a family C′′′1 with dramatically larger measure
than C′′1 . We then remove these restrictions as well as apply this gluing on C′2 to get C′′′2 whose measure not
much smaller than that of C′2. By averaging we can apply further restrictions without reducing measures to
obtain G1,G2 on a common set of coordinates.

Step 4: Hoffman bound. The measures of G1,G2 are so large that they cannot be cross-agreeing, so we
find a cross disagreement, which corresponds to an agreement of size s in the original codes.

We proceed to the formal proof of Theorem 6.4.

Proof of Theorem 6.4. We are given (r,m−k)-uncapturable Aj ⊂ [m][n]\Rj with |Rj | ≤ k for j = 1, 2,
and we need to find xj ∈ Aj with |{i ∈ [n] \ (R1 ∪ R2) : x1

i = x2
i }| = s, where n ≥ N logm and

r,m,N � s, k.
Step 1: Globalness. By uncapturability µ(A1) ≥ m−k, so by Lemma 5.5 with γ = m−1/10 and

r/100k in place of r we obtain A′1 = (A1)R′1→α′1 that is (r/100k, µ(A′1)/γ)-global with µ(A′1) > µ(A1),
where |R′1| ≤ log1/γ(1/µ(A1))r/100k ≤ r/10. We note that A′2 := A2 \

⋃
i∈R′1

Di→α′1(i) is (0.9r,m−k)-
uncapturable, so µ(A′2) ≥ m−k. From Lemma 5.5 we obtain B2 = (A′2)R′2→α′2 that is (r/100k, µ(B2)/γ)-
global with µ(B2) > µ(A′2), where |R′2| ≤ r/10. In particular, B2 6= ∅, so R′2 → α′2 has no agreement
with R1 → α1 or R′1 → α′1. We let B1 = A′1 \

⋃
i∈R′2

Di→α′2(i). By Claim 5.4, A′1 is (γm/4, µ(A′1)/2)-
uncapturable, so µ(B1) > 1

2µ(A′1), which implies that B1 is (r/100k, 2µ(B1)/γ)-global.
Step 2: Fairness. As n ≥ N logm and N is large, we have µ(B1), µ(B2) ≥ 1

2m
−k ≥ e−n/C , where

C = C(s, 0.1) is as in Proposition 6.1. Consider uniformly random S ⊂ [n] \ (R1 ∪ R′1 ∪ R2 ∪ R′2) of
size s and z ∈ [m]S. For large n the distribution of S has total variation distance o(1) from the uniform
distribution on

(
[n]\(R1∪R′1)

s

)
. Thus by Proposition 6.1 we have P[µ((B1)S→z) > .9µ(B1)] ≥ .9 − o(1),

and similarly for B2. Thus we can fix S and z so that both Cj = (Bj)S→z have µ(Cj) ≥ 1
2µ(Bj), so are

(r/100k, 4µ(Cj)/γ)-global.
Step 3: Expansion. By Lemma 6.11 applied to C2 with ε = 1/3k and b = 4, there are π2 ∈ Πm,m2,4

with m2 = Ωk(m), α′′2 ∈ [m2]R
′′
2 , where R′′2 ⊂ [n] \ (R2 ∪R′2 ∪ S) with |R′′2 | < Ok(logm)� n, such that

C′2 := (Cπ22 )R′′2→α′′2 has µπ2(C′2) ≥ 1/
√
m. Let

C′1 = C1 \
⋃
{Di→a : i ∈ R′′2 , (π2)i(a) = (α′′2)i}.
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By Claim 5.4, C1 is (γm/16, µ(C1)/2)-uncapturable, so µ(C′1) > 1
2µ(C1). Let C′′1 = (C′1)π2 . By Claim 6.8

we have µπ2(C′′1 ) > µ(C′1) ≥ 1
8m
−k.

By Lemma 6.11 applied to C′′1 under the 4-balanced measure µπ2 with ε = 1/3k and b = 4, there
are π1 ∈ Πm2,m1,4 with m1 = Ωk(m), α′′1 ∈ [m1]R

′′
1 , where R′′1 ⊂ [n] \ (R1 ∪ R′1 ∪ S) with |R′′1 | <

Ok(logm)� n, such that C′′′1 := ((C′′1 )π1)R′′1→α′′1 has µπ1◦π2(C′′′1 ) ≥ 1/
√
m. Let

C′′2 = C′2 \
⋃
{Di→a : i ∈ R′′1 , (π1)i(a) = (α′′1)i}.

Then µπ2(C′′2 ) ≥ µ(C′2) − Ok(m
−1 logm) ≥ 1/2

√
m. Let C′′′2 = (C′′2 )π1 . By Claim 6.8 we have

µπ1◦π2(C′′′2 ) > µ(C′′2 ) ≥ 1/2
√
m.

Step 4: Hoffman bound. By averaging, we can choose restrictions Gj ⊂ [m1][n]\R of C′′′j for j = 1, 2
whereR = R1∪R′1∪R′′1∪R2∪R′2∪R′′2∪S such that both ν(Gj) > ν(C′′′j ) > 1/2

√
m, where ν = µπ1◦π2 is

16-balanced. By construction, the elements of Gj for j = 1, 2 are of the form π1π2(xj[n]\R) where xj ∈ Aj
with |{i ∈ R \ (R1 ∪R2) : x1

i = x2
i }| = s. By Lemma 5.9 applied with λ = Ok(1/m) we can find a cross

disagreement, which corresponds to xj ∈ Aj with |{i ∈ [n] \ (R1 ∪R2) : x1
i = x2

i }| = s.

7 Huge alphabets

This section contains the proof of our main result Theorem 1.1 in the case of huge alphabets, i.e. when
n ≤ N(t) logm, with N(t) as in Theorem 6.2. As previously discussed, there are examples showing that a
proof strategy based on cross agreements between uncapturable codes cannot work in this setting, so instead
we adopt a more combinatorial argument to obtain expansion in measure from a ‘shadow’ operation, which
is analogous (but quite different in various details) to an argument in the hypergraph setting due to Keller
and Lifshitz [18]. This operation requires us to consider more general agreement configurations (which are
anyway of interest) even if we only want to find pairwise agreements as in our main result. We introduce
these configurations and their interpretation in terms of expanded hypergraphs in the first subsection, and
prove an extremal result for configurations. In the second subsection we define our shadow operation and
establish two key properties , namely that a code with a given forbidden configuration (a) has an average
shadow with much larger measure, and (b) there is some shadow with much stronger uncapturability. We
extend these properties in the third subsection to iterated shadows when there is some forbidden configu-
ration with a ‘kernel’, i.e. some common intersection of all restrictions in the configuration. We apply this
theory to prove the junta approximation theorem in the fourth subsection. Then in the final subsection we
complete our proof via a bootstrapping argument based on Shearer’s entropy inequality.

7.1 Hypergraphs

When m is huge, it is natural to view a code F ⊂ [m]n as an n-graph (n-uniform hypergraph) which is
n-partite (each edge has one vertex in each part) with parts V1, . . . , Vn, where each Vi = {(i, a) | a ∈ [m]},
identifying any x ∈ [m]n with {(i, a) : xi = a}. This setting is most convenient for introducing general
agreement configurations in the following definition, as these are a natural partite variation on the well-
studied topic of expanded hypergraphs (see the survey [24]).

Definition 7.1. An `-configuration is a pair (H,P) where H is a multi-`-graph and P = (U1, . . . , U`) is a
partition of V (H) such that each edge has one vertex in each part. We identify any H with its multiset of
edges {e1, . . . , eh}, so its size h = |H| is its number of edges. We often omit P from our notation. The
density ofH (with respect to P) is µ(H) = |H|

∏
i∈` |Ui|−1. The kernel ofH is K(H) =

⋂h
i=1 ei.
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The n-expansion H+(n) of H is the n-configuration obtained by adding disjoint sets Sj of n − ` new
vertices to each ej , forming new parts U`+1, . . . , Un so that each Sj has one vertex in each new part. We
say that F1, . . . ,Fh ⊂ [m]n cross contain H if they do so for H+(n) when viewed as n-graphs, i.e. there
are xj ∈ Fj for j ∈ [h] and an injection Φ : [`] → [n], so that for any j, j′ ∈ [h] and i ∈ [n] we have
xji = xj

′

i exactly when i = Φ(k) for some k ∈ [`] and ej ∩ ej′ ∩ Uk 6= ∅. We say that x1, . . . , xh realise H
in F1, . . . ,Fh. If Fi = F for all i we say that F containsH, otherwise we say F isH-free.

Example 7.2. A code F ⊂ [m]n is (t − 1)-avoiding if when viewed as an n-partite n-graph it does not
contain two edges e, e′ with |e ∩ e′| = t− 1; equivalently, F is H-free where H is the multi-(t− 1)-graph
with two identical edges.

The main result of this subsection is the following extremal result for cross containment at constant
densities (this suffices for our purposes, so we do not investigate the optimal bound).

Lemma 7.3. For any `, h ∈ N there is C > 0 so that ifH is an `-configuration of size h and F1, . . . ,Fh ⊂
[m]n with each µ(Fi) > ε, where n > C log(ε−1) and m > 2hn/ε, then F1, . . . ,Fh cross containH.

The proof will reduce to the case whenH is a matching, as in the following claim.

Claim 7.4. If F1, . . . ,Fh ⊂ [m]n with m > hn/ε and each µ(Fi) > ε then F1, . . . ,Fh cross contain a
matching.

Proof. We choose disjoint edges ei ∈ Fi for i ≥ 1 according to a greedy algorithm. Each choice reduces
the density of any Fi by at most n/m < ε/h, so the algorithm can be completed.

Proof of Lemma 7.3. Write H = {e1, . . . , eh} and let (U1, . . . , U`) be the fixed partition of H. We identify
each Fi with an n-partite n-graph with parts Vi = {(i, a) : a ∈ [m]}. We consider uniformly random
injections Φ : [`] → [n] and φj : Uj → VΦ(j) for each j ∈ [`]. Each edge ei then defines a restriction
Gi = (Fi)Φ([`])→αi , where αiΦ(j) = φj(ei ∩ Uj) for j ∈ [`].

We let C = C(`, 1/2h) be as in Proposition 6.1, which is then applicable as µ(Fi) > ε > e−n/C ,
giving P[µ(Gi) ≥ (1− 1/2h)µ(Fi)] ≥ 1− 1/2h. By a union bound we can fix Φ and φ1, . . . , φj so that all
µ(Gi) > ε/2. Then G1, . . . ,Gh cross contain a matching, so F1, . . . ,Fh cross containH.

7.2 Shadows

In this subsection we define our shadow (projection) operation and establish its two key properties mentioned
above (boosting measure and strengthening uncapturability).

Definition 7.5. For F ⊂ [m]n and i ∈ [n], the i-shadow of F is ∂i(F) =
⋃
a∈[m] ∂i→a(F), where

∂i→a(F) = Fi→a ⊂ [m]n−1. For I ⊂ [n] we let ∂I be the composition (in any order) of (∂i : i ∈ I).

The next lemma, analogous to a lemma for hypergraphs in [19], shows that shadows have significantly
larger measure on average if we forbid a configuration with the following ‘flatness’ property.

Definition 7.6. The centre of a configuration is the set of vertices contained in more than one edge.
We say that a configuration is flat if each part has at most one vertex in the centre.

Lemma 7.7. Suppose H is a flat `-configuration of size h and F ⊂ [m]n is H-free, with n ≥ h`. Then
|F| ≤ h

∑n
i=1 |∂i(F)|.
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Proof. Let F ′ be obtained from F by the following iterative deletion procedure starting from F ′ = F : if
there is any i ∈ [n] and y ∈ ∂i(F ′) such that at most h choices of x ∈ F ′ with x[n]\i = y then we delete all
such x. Any y ∈ ∂i(F) is considered at most once in this procedure before it is removed from the shadow.
Thus the number of deleted sets is at most h

∑n
i=1 |∂i(F)|, so it suffices to show F ′ = ∅.

Suppose for contradiction F ′ 6= ∅. We will show that F contains H. We write H = {e1, . . . , eh},
denote the parts ofH by U1, . . . , U`, and fix uj ∈ Uj for each j ∈ [`] so that each vertex of Uj other than uj
is contained in at most one edge. Fix any x ∈ F ′. We will construct x1, . . . , xh ∈ F ′ realisingH according
to injections φj : Uj → [m] so that xij = φj(ei ∩ Uj) and xj = φj(uj) for all i ∈ [h] and j ∈ [`]. As H is
flat this can be achieved greedily. Indeed, to construct xi we can start from xi = x and one by one for each
j such that ei ∩ Uj 6= {uj} replace xij by some new value not yet used in coordinate j, which is possible as
there are at least h+ 1 choices for xij for any given xi[n]\{j}. However, F isH-free, so we have the required
contradiction.

We conclude this subsection by showing under the same conditions as the previous lemma, that if a
code is uncapturable, then it has some shadow is significantly more uncapturable. The key point is that the
uncaptured measure is increased by a factor Ω(m/n), albeit at the expense of only considering restrictions
that are n times smaller.

Lemma 7.8. Suppose H is a flat `-configuration of size h and F ⊂ [m]n is H-free, with n ≥ h`. If F is
(r, ε)-uncapturable then ∂i(F) is (r/n, εm/nh)-uncapturable for some i ∈ [n].

Proof. We suppose each ∂i(F) is (r/n, δ)-capturable and show that δ > εm/nh. By definition, for each
i ∈ [n] there is a collection Di of at most r/n dictators in [m][n]\{i} such that µ(∂i(F) \

⋃
Di) 6 δ. We

let D =
⋃n
i=1Di where now we consider each dictator in [m]n. Then µ(F \

⋃
D) ≥ ε by uncapturability.

Applying Lemma 7.7 to F \
⋃
D, noting that each ∂i(F \

⋃
D) ⊂ ∂i(F) \

⋃
Di, we have

|F \
⋃
D| 6 s

n∑
i=1

|∂i(F) \
⋃
Di| 6 hn · δmn−1,

so ε 6 µ(F \
⋃
D) 6 δhn/m, i.e. δ > εm/nh.

7.3 Kernels and iterated shadows

In this subsection we consider configurations with a non-trivial kernel (intersection of all edges), for which
we show that they remain free of some configuration under iterated shadows (as many as the size of the
kernel), so the results of the previous subsection on single shadows become correspondingly stronger in this
setting. First we introduce some convenient notation.

Definition 7.9. Given an `-configurationH, we writeH⊕ [t] for the (`+ t)-configuration with t additional
parts of size 1 where each edge ofH is extended to also include the t new vertices.

Given an `-configuration H on v vertices, we let flat(H) be the v-configuration obtained by taking a
copy ofH with one vertex in each part and adding to each edge e disjoint sets Se of v − ` new vertices.

Remark 7.10.

1. Any (flat) configuration with a kernel of size tmay be expressed asH⊕[t] for some (flat) configuration
H with no kernel.

2. IfH is flat and contained inH′ thenH is contained in flat(H′).
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Lemma 7.11. For any (flat) configuration H there exists a (flat) configuration H′ such that for all t ∈ N
there exist m0, n0 ∈ N such that if F ⊂ [m]n with n ≥ n0, m ≥ m0 is H ⊕ [t]-free then ∂i(F) is
H′ ⊕ [t− 1]-free for all i ∈ [n].

Proof. Consider any `-configuration H of size h. We let C = C(` + t, h) be as in Lemma 7.3, ε = 1/2h,
n1 = 2C log(ε−1), m1 = 3hn/ε, and then prove the statement for H′ = [m1]n1 , the complete n1-partite
n1-graph with parts of size m1. We note that ifH was flat initially, then one can take flat(H′) instead ofH′
to preserve flatness, and the correctness follows from the analysis below and by Remark 7.10.

We show the contrapositive statement, i.e. that if ∂i∗(F) contains H′ ⊕ [t − 1] for some i∗ ∈ [n1] then
F containsH⊕ [t]. The version for flat configurations will then follow by Remark 7.10.2.

By relabelling we can assume that we have X = {x(y) : y ∈ [m1]n1} ⊂ F where each x(y)[n1] = y,
there is some T ∈

(
[n]\[n1]
t−1

)
such that x(y)i = 1 for all i ∈ T , and x(y)i 6= x(y′)i whenever y 6= y′ and

i /∈ [n] \ (T ∪ [n1] ∪ {i∗}). We m-colour [m1]n1 as C1, . . . , Cm, where each Cj = {y : x(y)i∗ = j}.
Note that if some µ(Cj) > ε then applying Lemma 7.3 with F1 = · · · = Fh = Cj we find a copy of H

in Cj . The corresponding x(y) ∈ F for each y in this copy agree outside [n1] in coordinates T ∪ {i∗} and
no others, so we obtain a copy ofH⊕ [t] in F .

Thus we may assume that each µ(Cj) < ε. By repeated merging we can form ‘meta-colours’ C′1, . . . , Cm′ ,
each of which is a union of some of the Cj’s, such that each µ(C′j) ∈ (ε, 2ε), so m′ ≥ 1/2ε = h. By
Lemma 7.3, C′1, . . . , Ch cross contain H ⊕ [1]. The corresponding x(y) ∈ F for each y in this copy agree
outside [n1] in coordinates [T ] and no others, so again we obtain a copy ofH⊕ [t] in F .

The following corollary is immediate by iterating Lemma 7.11.

Corollary 7.12. For any (flat) configuration H and t ∈ N there exist m0, n0 ∈ N and a (flat) configuration
H′ such that if F ⊂ [m]n with n ≥ n0, m ≥ m0 isH⊕ [t]-free then ∂I(F) isH′-free for all I ∈

(
[n]
t

)
.

We also have the following corollary giving improved estimates on measures and uncapturability of
iterated shadows.

Corollary 7.13. For any flat configuration H and t ∈ N there exist m0, n0 ∈ N and C > 0 such that for
anyH⊕ [t− 1]-free F ⊂ [m]n with n ≥ n0, m ≥ m0,

1. |F| 6 C
∑

I∈
(

[n]
t

) |∂I(F)|,

2. if F is (r, ε)-uncapturable then ∂I(F) is (r/nt, (m/n)tε/C)-uncapturable for some I ∈
(

[n]
t

)
.

Proof. We argue by induction on t. The base case t = 1 is given by Lemmas 7.7 and 7.8. Now sup-
pose t ≥ 2. By Lemma 7.11 there is a configuration H′ depending only on H such that each ∂i(F) is
H ⊕ [t − 2]-free. The induction hypothesis of (1) gives C ′ = C(H′, t − 1) such that each |∂i(F)| ≤
C ′
∑
{|∂I∪{i}(F)| : I ∈

(
[n]
t−1

)
}, which proves (1). For (2), if F is (r, ε)-uncapturable then by Lemma 7.8

the family ∂i(F) is (r/n, εm/n|H|)-uncapturable for some i ∈ [n]. By the induction hypothesis of (2),
∂I∪{i}(F) is (r/nt, (m/n)tε/C)-uncapturable for some I ∈

(
[n]\{i}
t−1

)
, which proves (2).

7.4 Junta approximation

In this subsection we prove Theorem 1.2 in the case that m is huge (at least exponential in n).

Theorem 7.14. For any t,N ∈ N there are K,n0 ∈ N such that if F ⊂ [m]n is (t − 1)-avoiding with
n > n0 and m > 2n/N then there exists a subcube D of co-dimension t such that µ(F \D) 6 2−n/Km−t.
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Proof. We apply Lemma 5.6 with r = nt, k = t and ε = 2−2n/K ≥ 1/m, where K,n0 � t,N , obtaining a
collection D of at most rk = nt

2
subcubes of co-dimension at most t such that FR→α is (r, εµ(D)−1m−t)-

uncapturable for each D = DR→α ∈ D and µ(F \
⋃
D) ≤ n2t2εm−t. We let Dd be the set of subcubes in

D of co-dimension d. To prove the theorem, it suffices to show that (a) Dd = ∅ for d < t, and (b) |Dt| ≤ 1.
To see (a), suppose for a contradiction that DR→α ∈ Dt−1−s with s ≥ 0. As F is (t − 1)-avoiding,

FR→α is s-avoiding, i.e. is H⊕ [s]-free, where H is the flat 0-configuration consisting of two copies of the
empty set. By Corollary 7.12, there is some flat configuration H′ such that ∂I(FR→α) is H′-free for any
I ∈

(
[n]\R
s

)
. By Corollary 7.13, as FR→α is (nt, εm−s−1)-uncapturable, there is some I ∈

(
[n]\R
s

)
such that

G := ∂I(FR→α) is (nt−s, ε/Ot(mn
s))-uncapturable.

To obtain the required contradiction we will show that G contains H′. Write |H′| = h′ = Ot(1). Let
J be the set of all dictators Di→a such that µ(Gi→a) > ε2/n2. We claim that |J | < h′. To see this,
suppose on the contrary that J contains Di1→a1 , . . . , Dih′→ah′ . Let I ′ = {i1, . . . , ih′}. By averaging, we
can fix xj ∈ [m]I

′
for j ∈ [h′] such that xj

ij
= aj , xj

ij′
6= aj

′
for all j′ 6= j, so that Fj = GI′→xj has

µ(Fj) > ε2/2n2. However, then H′ is cross contained in F1, . . . ,Fh′ by Lemma 7.3, applied with ε2/2n2

in place of ε (using n > C log(2n2/ε2) and m > 2hn · 2n2/ε2 for large K). Thus |J | < h′, as claimed.
By uncapturability of G, writing G′ = G \

⋃
J we have µ(G′) ≥ ε/Ot(mn

s) > ε2/m. By Lemma 7.7
we can fix i∗ ∈ [n] \ (R∪ I) with |G′|/h′n ≤ |∂i∗(G′)|. We fix any partition (F ′a : a ∈ [m]) of ∂i∗(G′) such
that each F ′a ⊂ ∂i∗→a(G′). Then

∑
a µ(F ′a) = µ(∂i∗G′) ≥ µ(G′)m/h′n > ε2/h′n. Also, by definition of

J each µ(F ′a) < ε2/n2. By repeated merging we can form a partition P of [m] such that each S ∈ P has∑
a∈S µ(F ′a) ∈ (ε2/n2, 2ε2/n2). Then |P| ≥ h′, so we can choose S1, . . . , Sh′ in P and apply Lemma 7.3

to see that F1, . . . ,Fh′ cross containH′, where each Fi =
⋃
a∈Si F

′
a. This completes the proof of (a).

To see (b), suppose for contradiction that we have distinct subcubes DRj→αj for j = 1, 2 of co-
dimension t. Suppose they agree on t−1−s coordinates, for some s ≥ 0. Consider G1 = FR1→α1 \FR2→α2

and G2 = FR2→α2 \ FR1→α1 . By uncapturability, both µ(Gj) > ε > e−n/C , where C = C(s, 0.1) is as in
Proposition 6.1, as K is large. Consider uniformly random S ∼

(
[n]\(R1∪R2)

s

)
and x ∈ [m]S.

By Proposition 6.1 both P[µ((Gj)S→x) > .9µ(Gj)] ≥ .9 − o(1), as S is total variation distance o(1)

from uniform on
(

[n]\Rj
s

)
. Thus we can fix S, x so that both G′j = (Gj)S→x have µ(G′j) > .9ε. By averaging,

we can fix some G′′1 = (G′1)R2\R1→a1 with µ(G′′1 ) ≥ µ(G′1) > .9ε, and similarly some G′′2 . Then G′′1 , G′′2 are
defined by restrictions of F to R1 ∪ R2 ∪ S with agreement exactly t − 1, so must be cross intersecting.
However, m > 2n/N � ε−1 for large K, so this contradicts Lemma 4.6.

7.5 Bootstrapping

We conclude this part with the bootstrapping step that completes the proof of our main theorem for huge
alphabets, which we restate as follows.

Theorem 7.15. For any t,N ∈ N there is n0 ∈ N such that if n > n0, m > 2n/N and F ⊂ [m]n is
(t− 1)-avoiding then |F| ≤ mn−t, with equality only when F is a subcube of co-dimension t.

We require Shearer’s entropy lemma [3], as applied to the projection operators ΠS = ∂[n]\S on [m]n.

Lemma 7.16. For F ⊂ [m]n and k ∈ [n] we have |F|(
n−1
k−1) 6

∏
|S|=k |ΠS(F)|.

Proof of Theorem 7.15. Suppose F ⊂ [m]n is (t − 1)-avoiding with |F| > mn−t. By Theorem 7.14
there is a subcube D of co-dimension t such that G := F \ D has ε := µ(G)mt 6 2−n/K , for some
K = K(N, t). We may assume D = {x ∈ [m]n |x1 = . . . = xt = 1}. Suppose for contradiction that
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ε > 0. For each T ( [t] let GT be the set of all x[n]\[t] where x ∈ G with T = {i ∈ [t] : xi = 1}. We have
ε = µ(G)mt 6

∑
T m

t−|T |µ(GT ), so for a contradiction it suffices to show that each µ(GT ) < m|T |−tε/n.
As F is (t − 1)-avoiding, each GT is (t − 1 − |T |)-avoiding. In particular, if |T | = t − 1 then GT is

intersecting, so by Lemma 4.6 we have the required bound µ(GT ) < 2ε/m2 < m−1ε/n.
Now fix any T ⊂ [t] where |T | = t − 1 − d with d ≥ 1. As GT is d-avoiding, it is free of a

configuration with kernel size d, so by Corollary 7.13 we have |GT | 6 Ot(1)
∑

I∈
( [n]
d+1

) |∂I(GT )|. Fix

any I ∈
( [n]
d+1

)
. To complete the proof it suffices to establish the following claim, as this will imply

µ(GT ) < Ot(1)(n/m)d+1ε2 < m|T |−tε/n.

Claim 7.17. µ(∂IGT ) < ε2.

We will prove this claim using Shearer’s inequality with k = d, so we now analyse the projections
ΠS∂IGT = ΠSGT for S ∈

([n]\I
d

)
. For such S with S ∩ [t] 6= ∅ we use the trivial bound |ΠSGT | ≤ md.

Now fix S with S ∩ [t] = ∅. We will show that µ(ΠSGT ) < 2ε.
To see this, we first show for any x ∈ ΠSGT that F ′x := F[t]→1,S→x has µ(F ′x) ≤ n/m. Suppose not,

and fix y ∈ G with πS(y) = x and T = {i ∈ [t] : yi = 1}. By a union bound µ(F ′x\
⋃
i∈[n]\([t]∪S)Di→yi) >

0, so we can choose z ∈ F ′x that disagrees with y on [n] \ ([t] ∪ S). However, extending z with x ∈ [m]S

and 1 ∈ [m]t gives z+ ∈ F with agr(z+, y) = t− 1, which is impossible, so indeed µ(F ′x) ≤ n/m.
As |F| ≥

∣∣D[t]→1

∣∣ this implies |G| ≥ |D[t]→1 \ F| ≥ |ΠSGT | · (1− n/m)mn−t−d, so ε = µ(G)mt ≥
(1 − n/m)µ(ΠSGT ), giving µ(ΠSGT ) < 2ε. Finally, writing n′ = |[n] \ I| = n − (d + 1), Lemma 7.16
gives

|∂IGT |(
n′−1
d−1 ) 6

∏
S

|ΠS∂IGT )| 6 (md)(
n′
d )−(n

′−t
d )(2εmd)(

n′−t
d ) = (2ε)(

n′−t
d )(md)(

n′
d ),

so |∂IGT | ≤ (2ε)n
′/2d(md)n

′/d < ε2mn′ . This completes the proof of the claim, and so of the theorem.

8 Configurations

In this section we briefly consider generalisations to excluded configurations (as in the previous section).
Our aim is not a systematic study, but just to illustrate the further potential applications of our methods. We
start with a general junta approximation result for small alphabets.

Theorem 8.1. For every η > 0, configurationH and m ∈ N with m > |H| there are J, n0 ∈ N such that if
F ⊂ [m]n isH-free with n ≥ n0 then there is anH-free J-junta J ⊂ [m]n such that µ(F \ J ) ≤ η.

The proof requires the following generalisation of Theorem 3.4.

Theorem 8.2. For every h,m ∈ N with m > h and µ > 0 there are ε, c > 0 and r ∈ N such that
if F1, . . . ,Fh ⊂ [m]n are (r, ε)-pseudorandom with each µ(Fj) > µ and (x1, . . . , xh) ∈ ([m]n)h is
uniformly random subject to agr(xj , xj′) = 0 whenever j 6= j′ then P(x1 ∈ F1, . . . , xh ∈ Fh) > c.

The proof of Theorem 8.2 is the same as that of Theorem 3.4, except that the absolute spectral gap
condition must be replaced by a more general condition on ‘correlated spaces’, which specialises to our
situation as follows. Given f, g : [m]h → R with Ef = Eg = 0 and Ef2 = Eg2 = 1, such that f depends
only on the first coordinate and g does not depend on the first coordinate, and a ∈ [m]h with distinct
coordinates chosen uniformly at random, we need to show that Ef(a)g(a) < 1. By considering the equality
conditions for Cauchy-Schwarz, it is not hard to see that this holds when m > h.
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Proof of Theorem 8.1. The proof is the same as that of Theorem 2.1, except that instead of showing that J is
t-intersecting we need to show that J isH-free. To see this, we suppose for a contradiction that J contains
H and show that F containsH. We supposeH = {e1, . . . , eh} is an `-configuration with parts (U1, . . . , U`)
realised by x1, . . . , xh ∈ J . By relabelling we can assume that H is realised on coordinate set [`], i.e. for
any j, j′ ∈ [h] and i ∈ [n] we have xji = xj

′

i exactly when i ∈ [`] and ej ∩ ej′ ∩ Ui 6= ∅. For j ∈ [h] we
let Gj = F

J∪[`]→xj
J∪[`]

. Then each Gj is (r − `, ε)-pseudorandom with density at least η/3, so by Theorem

8.2 we find wj ∈ Gj for j ∈ [h] with agr(wj , wj′) = 0 whenever j 6= j′. However, ((xjJ∪[`], wj) : j ∈ [h])
realiseH in F , contradiction.

Next we will turn to large alphabets, for which we require the following generalised Hoffman bound.

Lemma 8.3. Let m > hb and suppose that ν is a b-balanced product measure on [m]n and F1, . . . ,Fh ⊂
[m]n with

∏h
j=1 ν(Fj) > 2hb/(m− hb) > 0. Then F1, . . . ,Fh cross contain an h-matching.

Proof. We show the following statement by induction on h: if (x1, . . . , xh) ∈ ([m]n)h is distributed as νh

conditioned on agr(xj , xj
′
) = 0 whenever j 6= j′ then P(x1 ∈ F1, . . . , x

h ∈ Fh) ≥ ν(F1) . . . ν(Fh) −
2hb/(m− hb). The case h = 1 is trivial.

For the induction step, as in the proof of Lemma 5.9 we consider the product Markov chain T on
[m]n where each Ti is the Markov chain on [m] with transition probabilities (Ti)xx = 0 and (Ti)xy =
νi(y)/(1 − νi(x)) for y 6= x. We also consider y1, . . . , yh−1, xh, where xh is chosen according to ν and
each yj is chosen independently according to ν conditioned on agr(yj , xh) = 0. We write fj for the
characteristic functions of Fj for j ∈ [h]. We have

E[f1(y1) . . . fh−1(yh−1)fh(xh)] = Ex[Tf1(x) . . . T fh−1(x)fh(x)] = Ef1 . . .Efh +
∑

∅6=S⊂[h−1]

EgS ,

where gS(x) =
∏
i∈S(Tfi − Efi)(x)

∏
i∈[h−1]\S fi(x). For each such S we fix some s ∈ S and write

gS(x) = (Tfs − Efs)(x)hS(x). As Tfs − Efs = T (fs − Efs) and E(fs − Efs) = 0, as in the proof of
Lemma 5.9 we have the spectral bound

‖Tfs − Efs‖2 ≤
b/m

1− b/m
=

b

m− b
.

Then |EgS(x)| ≤ b/(m − b) by Cauchy-Schwarz, so E[f1(y1) . . . fh−1(yh−1)fh(xh)] ≥ Ef1 . . .Efh −
2h−1b/(m− b).

Now we write P(x1 ∈ F1, . . . , x
h ∈ Fh) = E

∏h
j=1 fj(x

j) = Exfh(x)E[
∏h−1
j=1 fj(x

j) | xh = x].
For each x we apply the induction hypothesis to f1, . . . , fh−1 on {x ∈ [m]n : agr(x, xh) = 0}, which is
isomorphic to [m−1]n, according to the product measure ν[xh] with each ν[xh]i(a) = νi(a)/(1−νi(xhi )) ≤
b/m

1−b/m = b
m−b , so ν[xh] is b′-balanced, where b′ = b(m−1)/(m−b). As b′/(m−1− (h−1)b′) = b/(m−

hb), by induction hypothesis E[
∏h−1
j=1 fj(x

j) | xh = x] ≥ E[
∏h−1
j=1 fj(y

j) | xh = x] − 2h−1b/(m − hb),
so E

∏h
j=1 fj(x

j) ≥ Exfh(x)
[
E[
∏h−1
j=1 fj(y

j) | xh = x] − 2h−1b/(m − hb)
]
≥ Ef1 . . .Efh − 2hb/(m −

hb).

For moderate alphabets, we have the following generalised form of our earlier lemma on fixed agree-
ments between uncapturable families: we show that uncapturable families cross contain any configuration.
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Theorem 8.4. For any configurationH of size h and s, k ∈ N there are r,m0, N ∈ N such that if m ≥ m0,
n ≥ N logm and Aj ⊂ [m][n]\Rj are (r,m−k)-uncapturable with |Rj | ≤ k for j ∈ [h] then there is a
realisation y1, . . . , yh ofH with yj = xj[n]\T for some xj ∈ Aj for j ∈ [h], where T =

⋃
j Rj .

Proof. We follow the proof of Theorem 6.4.
Step 1: Globalness. We define Atj for j ∈ [h], 0 ≤ t ≤ h as follows. Initially all A0

j = Aj .
At step t ∈ [h] we apply Lemma 5.5 to At−1

t , which will have µ(At−1
t ) ≥ m−k, with γ = m−1/10

and r/100kh in place of r we obtain Att = (At−1
t )R′t→α′t that is (r/100kh, µ(At−1

t )/γ)-global with
µ(Att) > µ(At−1

t ), where |R′1| ≤ (r/100kh) log1/γ(1/µ(At−1
t )) ≤ r/10h. For each j ∈ [h] \ {t} we

let Atj = At−1
j \

⋃
i∈R′t

Di→α′t(i). Then uncapturability implies the above assumption µ(At−1
t ) ≥ m−k.

By Claim 5.4, each Att is (γm/4, µ(Att)/2)-uncapturable, so µ(Aht ) > 1
2µ(Att), which implies that Aht is

(r/100kh, 2µ(Aht )/γ)-global.
Step 2: Fairness. As n ≥ N logm and N is large, each µ(Ahj ) ≥ 1

2m
−k ≥ e−n/C , where C =

C(s, 1/2h) is as in Proposition 6.1. Consider uniformly random L ∈
([n]\

⋃
j(Rj∪R′j)
`

)
and let z1, . . . , z` ∈

[m]L be a uniformly random copy of H. By Proposition 6.1 each P[µ((Ahj )L→zj ) > 1
2µ(Ahj )] ≥ 1 −

1/2h − o(1). Thus we can fix L and z1, . . . , z` so that all Cj = (Ahj )L→zj have µ(Cj) ≥ 1
2µ(Ahj ), so are

(r/100kh, 4µ(Cj)/γ)-global.
Step 3: Expansion. We define Ctj ⊂ [mt]

n for j ∈ [h], 0 ≤ t ≤ h as follows. Initially all C0
j = Cj

and m0 = m. At step t ∈ [h] we apply Lemma 6.11 with ε = 1/4kh and b = bt = 42t , to Ct−1
t ,

which will have µπt−1(Ct−1
t ) > 1

8m
−k, obtaining πt ∈ Πmt−1,mt,bt with mt = Ωk(mt−1), α′′t ∈ [mt]

R′′t ,
where R′′t ⊂ [n] \ (Rt ∪ R′t ∪ L) with |R′′t | < Ok(logm) � n, such that Ctt := (Ct−1

t )πt
R′′t→α′′t

has

µπt(Ctt) ≥ 2m−1/2h. For each j ∈ [h] \ {t} we let Ctj = πt(Ct−1
j ) \

⋃
i∈R′′t

Di→α′′t .
For j > t we can write Ctj = π◦t(X ), where π◦t = πt ◦ · · · ◦ π1 and X = Cj \

⋃
t′≤t

⋃
{Di→a : i ∈

R′′t′ , (π
◦t′
i (a) = (α′′t′)i}. As µ(Cj) is (r/100kh, 4µ(Cj)/γ)-global, it is (γm/8, µ(Cj)/2)-uncapturable, so

µ(X ) ≥ µ(Cj)/2 > 1
8m
−k. By Claim 6.8 this implies the above assumption µπt−1(Ct−1

t ) > 1
8m
−k. At the

end of the process, each µπ◦h(Chj ) > µπ◦h(Cjj )−Ok,h(m−1 logm) ≥ m−1/2h.
Step 4: Generalised Hoffman bound. By averaging, we can choose restrictions Gj ⊂ [m1]R of Chj for

j ∈ [h] where R = L ∪
⋃
j(Rj ∪R′j ∪R′′j ) such that all ν(Gj) > m−1/2h, where ν = µπ◦h is bh-balanced.

By construction, the elements of Gj are of the form π◦h(xj[n]\R) where xj ∈ Aj form a copy ofH on L and

have no other agreements in R \
⋃
j(Rj ∪R′j ∪R′′j ). As

∏
j ν(Gj) ≥ m−1/2 > 2hbh/(mh − hbh) > 0, by

Lemma 8.3 we can find a cross matching in G1, . . . ,Gh, which corresponds to xj ∈ Aj such that yj = xj[n]\T
realiseH.

We conclude this section with a junta approximation result for configurations over large alphabets, where
for simplicity we restrict attention to flat configurations with no kernel. For this case we obtain a result that
is analogous to our junta approximation result in terms of ‘crosscuts’ of expanded hypergraphs in [15].

First we give the appropriate definition of the crosscut for configurations. LetH be an `-configuration of
size h. The crosscut σ(H) is the minimum number s such that there is a collection

⋃
D of s co-dimension 1

subcubes such thatH ⊆
⋃
D, among all collectionD of s co-dimension 1 and each edge e ∈ H is contained

in exactly one subcube in D. Note that σ(H) > 1 if and only ifH has no kernel, i.e. K(H) = ∅.

Theorem 8.5. For every η > 0 and flat configuration H with no kernel, there is C such that if m,n > C
and F ⊂ [m]n is H-free, then there is a collection D of fewer than σ(H) subcubes of co-dimension 1 such
that µ(F \

⋃
D) 6 η/m.
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Proof. Let F ⊂ [m]n beH-free, whereH = {e1, . . . , eh} is an `-configuration with parts (U1, . . . , U`) and
K(H) = ∅.

First we consider moderate alphabet sizes, i.e. n > N logm, with m,N � h, `. We can assume that F
is (r,m−2)-capturable, with h, `� r � m, otherwise we findH by Theorem 8.4, applied with allAj = F .
Thus we find a collection J of at most r subcubes of co-dimension 1 such that µ(F \

⋃
J ) ≤ m−2. Let D

be the set of Di→a ∈ J such that µ(Fi→a) ≥ η/2r. Then µ(
⋃
J \

⋃
D) < η/2m, so it suffices to show

|D| < σ(H).
Suppose for a contradiction that |D| ≥ σ(H). Then by definition D contains a copy of H, without loss

of generality realised on coordinate set [`] by injections φi : Ui → Vi = {(i, a) : a ∈ [m]}, such that for
each j ∈ [h] there is Dij→aj ∈ D such that φij′ (ej ∩ Uij′ ) = (ij′ , a

j′) iff j = j′.
Let C be the set of i ∈ [`] such that Ui contains a vertex in the centre ofH. For i ∈ C let ci be the vertex

of Ui in the centre ofH (which is unique by flatness). We may assume for any i ∈ C that D either contains
Di→φi(ci) or does not contain any Di→a; indeed, if D does not contain Di→φi(ci) then each Di→a is Dij→aj
for at most one j ∈ [h], so we can obtain an alternative realisation replacing φi by φ′i : Ui → Vi′ for some
new i′ ∈ [m], where φ′i(v) = (i′, a) whenever φi(v) = (i, a).

Let I be the set of all i ∈ [n] such that D contains some Di→a. We claim that we can fix yj ∈ [m]I for
j ∈ [h] such that (a) µ(FI→yj ) ≥ η/3r for all j ∈ [h], (b) yj

ij
= aj for all j ∈ [h], and (c) for all j ∈ [h],

j′ 6= j, if ij
′

= ij then yji 6= yj
′

i for all i 6= ij , and otherwise yji 6= yj
′

i for all i ∈ I (in words, yj and yj
′

may only agree on ij if the i’s corresponding to j, j′ coincide, and must disagree on any other coordinate).
To see this we apply a greedy algorithm. To define yj , we consider

Gj = Fij→aj \
⋃

j′<j,i∈I
(i,yj

′
i )6=(ij ,aj)

({
x ∈ [m]n |xi = yj

′

i

})
ij→aj

,

which has µ(Gj) > µ(Fij→aj ) −
h|I|
m > η

2r −
h`
m > η

3r . By averaging we can fix a restriction FI→yj of Gj
with at least this measure, so the claim holds.

It remains to show that G1, . . . ,Gh cross contain the configuration H′ obtained from H by deleting the
parts corresponding to I . As in the proof of Lemma 7.3, by Proposition 6.1 we can reduce to the case that
H′ is a matching, which holds by Lemma 8.3. Thus the theorem holds for moderate alphabet sizes,

Now we consider huge alphabets, i.e. n > n0 and m > 2n/N , where K,n0 � N . We let D be the set
of all dictators Di→a such that µ(Fi→a) > η2/n2. Similarly to the proof of (a) in Theorem 7.14 we have
|D| < σ(H). Let F ′ = F \

⋃
D. It suffices to show µ(F ′) < η/m.

Suppose µ(F ′) ≥ η/m. Similarly to the proof of (a) in Theorem 7.14 we fix i∗ ∈ [n] with |F ′|/hn ≤
|∂i∗(F ′)| and partition ∂i∗(G′) into (F ′a : a ∈ [m]) so that

∑
a µ(F ′a) = µ(∂i∗G′) ≥ µ(G′)m/hn ≥ η/hn.

By definition of J and repeated merging we can form F1, . . . ,Fh of the form Fi = ∪a∈SiF ′a with each
µ(Fi) ∈ (η2/n2, 2η2/n2). However, these cross containH by Lemma 7.3.

9 Concluding remarks

An open problem is to decide whether our main theorem holds for the binary alphabet m = 2. Here our
junta approximation method cannot work, as the (conjectural) extremal examples are not juntas: they are
balls depending on all coordinates. Despite this, it is still plausible that a result can be obtained by a stability
method, by adapting the methods of [17] in proving stability for Katona’s intersection theorem.

Another natural open problem is to obtain an infinitary version of our main theorem. Say A ⊂ Rn is
(t − 1)-avoiding if it contains no pair x, y with |{i : xi = yi}| = t − 1. What is the maximum possible
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Hausdorff dimension of A? At first one might think that the answer is n− t, and that this would follow from
our theorems for large finite alphabets via a standard limiting argument if one assumes that A is closed. One
must make some assumption on A for any non-trivial result, as there are pathological examples of A ⊂ Rn
of Hausdorff dimension n in which any distinct x, y have xi 6= yi for all i ∈ [n]. However, even when A
is closed there are some surprises. For example, although it is not hard to see that a 1-avoiding set in [m]3

has size O(m), there is a closed 1-avoiding set A ⊂ R3 with Hausdorff dimension 2: this can be achieved
by A = {(x, f(x), f(x)) : x ∈ [0, 1]} for a suitably pathological continuous function f .
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[8] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. The Quarterly
Journal of Mathematics, 12(1):313–320, 1961.
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[11] Peter Frankl and Vojtěch Rödl. Forbidden intersections. Transactions of the American Mathematical
Society, 300(1):259–286, 1987.

[12] Peter Frankl and Norihide Tokushige. The Erdős–Ko–Rado theorem for integer sequences. Combina-
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